OpenLibm/slatec/cpofa.f

82 lines
2.6 KiB
FortranFixed
Raw Normal View History

*DECK CPOFA
SUBROUTINE CPOFA (A, LDA, N, INFO)
C***BEGIN PROLOGUE CPOFA
C***PURPOSE Factor a complex Hermitian positive definite matrix.
C***LIBRARY SLATEC (LINPACK)
C***CATEGORY D2D1B
C***TYPE COMPLEX (SPOFA-S, DPOFA-D, CPOFA-C)
C***KEYWORDS LINEAR ALGEBRA, LINPACK, MATRIX FACTORIZATION,
C POSITIVE DEFINITE
C***AUTHOR Moler, C. B., (U. of New Mexico)
C***DESCRIPTION
C
C CPOFA factors a complex Hermitian positive definite matrix.
C
C CPOFA is usually called by CPOCO, but it can be called
C directly with a saving in time if RCOND is not needed.
C (Time for CPOCO) = (1 + 18/N)*(Time for CPOFA) .
C
C On Entry
C
C A COMPLEX(LDA, N)
C the Hermitian matrix to be factored. Only the
C diagonal and upper triangle are used.
C
C LDA INTEGER
C the leading dimension of the array A .
C
C N INTEGER
C the order of the matrix A .
C
C On Return
C
C A an upper triangular matrix R so that A =
C CTRANS(R)*R where CTRANS(R) is the conjugate
C transpose. The strict lower triangle is unaltered.
C If INFO .NE. 0 , the factorization is not complete.
C
C INFO INTEGER
C = 0 for normal return.
C = K signals an error condition. The leading minor
C of order K is not positive definite.
C
C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
C Stewart, LINPACK Users' Guide, SIAM, 1979.
C***ROUTINES CALLED CDOTC
C***REVISION HISTORY (YYMMDD)
C 780814 DATE WRITTEN
C 890831 Modified array declarations. (WRB)
C 890831 REVISION DATE from Version 3.2
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900326 Removed duplicate information from DESCRIPTION section.
C (WRB)
C 920501 Reformatted the REFERENCES section. (WRB)
C***END PROLOGUE CPOFA
INTEGER LDA,N,INFO
COMPLEX A(LDA,*)
C
COMPLEX CDOTC,T
REAL S
INTEGER J,JM1,K
C***FIRST EXECUTABLE STATEMENT CPOFA
DO 30 J = 1, N
INFO = J
S = 0.0E0
JM1 = J - 1
IF (JM1 .LT. 1) GO TO 20
DO 10 K = 1, JM1
T = A(K,J) - CDOTC(K-1,A(1,K),1,A(1,J),1)
T = T/A(K,K)
A(K,J) = T
S = S + REAL(T*CONJG(T))
10 CONTINUE
20 CONTINUE
S = REAL(A(J,J)) - S
IF (S .LE. 0.0E0 .OR. AIMAG(A(J,J)) .NE. 0.0E0) GO TO 40
A(J,J) = CMPLX(SQRT(S),0.0E0)
30 CONTINUE
INFO = 0
40 CONTINUE
RETURN
END