OpenLibm/slatec/cspdi.f

239 lines
7.6 KiB
FortranFixed
Raw Normal View History

*DECK CSPDI
SUBROUTINE CSPDI (AP, N, KPVT, DET, WORK, JOB)
C***BEGIN PROLOGUE CSPDI
C***PURPOSE Compute the determinant and inverse of a complex symmetric
C matrix stored in packed form using the factors from CSPFA.
C***LIBRARY SLATEC (LINPACK)
C***CATEGORY D2C1, D3C1
C***TYPE COMPLEX (SSPDI-S, DSPDI-D, CHPDI-C, CSPDI-C)
C***KEYWORDS DETERMINANT, INVERSE, LINEAR ALGEBRA, LINPACK, MATRIX,
C PACKED, SYMMETRIC
C***AUTHOR Bunch, J., (UCSD)
C***DESCRIPTION
C
C CSPDI computes the determinant and inverse
C of a complex symmetric matrix using the factors from CSPFA,
C where the matrix is stored in packed form.
C
C On Entry
C
C AP COMPLEX (N*(N+1)/2)
C the output from CSPFA.
C
C N INTEGER
C the order of the matrix A .
C
C KVPT INTEGER(N)
C the pivot vector from CSPFA.
C
C WORK COMPLEX(N)
C work vector. Contents ignored.
C
C JOB INTEGER
C JOB has the decimal expansion AB where
C if B .NE. 0, the inverse is computed,
C if A .NE. 0, the determinant is computed.
C
C For example, JOB = 11 gives both.
C
C On Return
C
C Variables not requested by JOB are not used.
C
C AP contains the upper triangle of the inverse of
C the original matrix, stored in packed form.
C The columns of the upper triangle are stored
C sequentially in a one-dimensional array.
C
C DET COMPLEX(2)
C determinant of original matrix.
C Determinant = DET(1) * 10.0**DET(2)
C with 1.0 .LE. ABS(DET(1)) .LT. 10.0
C or DET(1) = 0.0.
C
C Error Condition
C
C A division by zero will occur if the inverse is requested
C and CSPCO has set RCOND .EQ. 0.0
C or CSPFA has set INFO .NE. 0 .
C
C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
C Stewart, LINPACK Users' Guide, SIAM, 1979.
C***ROUTINES CALLED CAXPY, CCOPY, CDOTU, CSWAP
C***REVISION HISTORY (YYMMDD)
C 780814 DATE WRITTEN
C 890531 Changed all specific intrinsics to generic. (WRB)
C 890831 Modified array declarations. (WRB)
C 891107 Corrected category and modified routine equivalence
C list. (WRB)
C 891107 REVISION DATE from Version 3.2
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900326 Removed duplicate information from DESCRIPTION section.
C (WRB)
C 920501 Reformatted the REFERENCES section. (WRB)
C***END PROLOGUE CSPDI
INTEGER N,JOB
COMPLEX AP(*),WORK(*),DET(2)
INTEGER KPVT(*)
C
COMPLEX AK,AKKP1,AKP1,CDOTU,D,T,TEMP
REAL TEN
INTEGER IJ,IK,IKP1,IKS,J,JB,JK,JKP1
INTEGER K,KK,KKP1,KM1,KS,KSJ,KSKP1,KSTEP
LOGICAL NOINV,NODET
COMPLEX ZDUM
REAL CABS1
CABS1(ZDUM) = ABS(REAL(ZDUM)) + ABS(AIMAG(ZDUM))
C
C***FIRST EXECUTABLE STATEMENT CSPDI
NOINV = MOD(JOB,10) .EQ. 0
NODET = MOD(JOB,100)/10 .EQ. 0
C
IF (NODET) GO TO 110
DET(1) = (1.0E0,0.0E0)
DET(2) = (0.0E0,0.0E0)
TEN = 10.0E0
T = (0.0E0,0.0E0)
IK = 0
DO 100 K = 1, N
KK = IK + K
D = AP(KK)
C
C CHECK IF 1 BY 1
C
IF (KPVT(K) .GT. 0) GO TO 30
C
C 2 BY 2 BLOCK
C USE DET (D T) = (D/T * C - T) * T
C (T C)
C TO AVOID UNDERFLOW/OVERFLOW TROUBLES.
C TAKE TWO PASSES THROUGH SCALING. USE T FOR FLAG.
C
IF (CABS1(T) .NE. 0.0E0) GO TO 10
IKP1 = IK + K
KKP1 = IKP1 + K
T = AP(KKP1)
D = (D/T)*AP(KKP1+1) - T
GO TO 20
10 CONTINUE
D = T
T = (0.0E0,0.0E0)
20 CONTINUE
30 CONTINUE
C
IF (NODET) GO TO 90
DET(1) = D*DET(1)
IF (CABS1(DET(1)) .EQ. 0.0E0) GO TO 80
40 IF (CABS1(DET(1)) .GE. 1.0E0) GO TO 50
DET(1) = CMPLX(TEN,0.0E0)*DET(1)
DET(2) = DET(2) - (1.0E0,0.0E0)
GO TO 40
50 CONTINUE
60 IF (CABS1(DET(1)) .LT. TEN) GO TO 70
DET(1) = DET(1)/CMPLX(TEN,0.0E0)
DET(2) = DET(2) + (1.0E0,0.0E0)
GO TO 60
70 CONTINUE
80 CONTINUE
90 CONTINUE
IK = IK + K
100 CONTINUE
110 CONTINUE
C
C COMPUTE INVERSE(A)
C
IF (NOINV) GO TO 240
K = 1
IK = 0
120 IF (K .GT. N) GO TO 230
KM1 = K - 1
KK = IK + K
IKP1 = IK + K
IF (KPVT(K) .LT. 0) GO TO 150
C
C 1 BY 1
C
AP(KK) = (1.0E0,0.0E0)/AP(KK)
IF (KM1 .LT. 1) GO TO 140
CALL CCOPY(KM1,AP(IK+1),1,WORK,1)
IJ = 0
DO 130 J = 1, KM1
JK = IK + J
AP(JK) = CDOTU(J,AP(IJ+1),1,WORK,1)
CALL CAXPY(J-1,WORK(J),AP(IJ+1),1,AP(IK+1),1)
IJ = IJ + J
130 CONTINUE
AP(KK) = AP(KK) + CDOTU(KM1,WORK,1,AP(IK+1),1)
140 CONTINUE
KSTEP = 1
GO TO 190
150 CONTINUE
C
C 2 BY 2
C
KKP1 = IKP1 + K
T = AP(KKP1)
AK = AP(KK)/T
AKP1 = AP(KKP1+1)/T
AKKP1 = AP(KKP1)/T
D = T*(AK*AKP1 - (1.0E0,0.0E0))
AP(KK) = AKP1/D
AP(KKP1+1) = AK/D
AP(KKP1) = -AKKP1/D
IF (KM1 .LT. 1) GO TO 180
CALL CCOPY(KM1,AP(IKP1+1),1,WORK,1)
IJ = 0
DO 160 J = 1, KM1
JKP1 = IKP1 + J
AP(JKP1) = CDOTU(J,AP(IJ+1),1,WORK,1)
CALL CAXPY(J-1,WORK(J),AP(IJ+1),1,AP(IKP1+1),1)
IJ = IJ + J
160 CONTINUE
AP(KKP1+1) = AP(KKP1+1)
1 + CDOTU(KM1,WORK,1,AP(IKP1+1),1)
AP(KKP1) = AP(KKP1)
1 + CDOTU(KM1,AP(IK+1),1,AP(IKP1+1),1)
CALL CCOPY(KM1,AP(IK+1),1,WORK,1)
IJ = 0
DO 170 J = 1, KM1
JK = IK + J
AP(JK) = CDOTU(J,AP(IJ+1),1,WORK,1)
CALL CAXPY(J-1,WORK(J),AP(IJ+1),1,AP(IK+1),1)
IJ = IJ + J
170 CONTINUE
AP(KK) = AP(KK) + CDOTU(KM1,WORK,1,AP(IK+1),1)
180 CONTINUE
KSTEP = 2
190 CONTINUE
C
C SWAP
C
KS = ABS(KPVT(K))
IF (KS .EQ. K) GO TO 220
IKS = (KS*(KS - 1))/2
CALL CSWAP(KS,AP(IKS+1),1,AP(IK+1),1)
KSJ = IK + KS
DO 200 JB = KS, K
J = K + KS - JB
JK = IK + J
TEMP = AP(JK)
AP(JK) = AP(KSJ)
AP(KSJ) = TEMP
KSJ = KSJ - (J - 1)
200 CONTINUE
IF (KSTEP .EQ. 1) GO TO 210
KSKP1 = IKP1 + KS
TEMP = AP(KSKP1)
AP(KSKP1) = AP(KKP1)
AP(KKP1) = TEMP
210 CONTINUE
220 CONTINUE
IK = IK + K
IF (KSTEP .EQ. 2) IK = IK + K + 1
K = K + KSTEP
GO TO 120
230 CONTINUE
240 CONTINUE
RETURN
END