OpenLibm/slatec/ctrdi.f

150 lines
5 KiB
FortranFixed
Raw Normal View History

*DECK CTRDI
SUBROUTINE CTRDI (T, LDT, N, DET, JOB, INFO)
C***BEGIN PROLOGUE CTRDI
C***PURPOSE Compute the determinant and inverse of a triangular matrix.
C***LIBRARY SLATEC (LINPACK)
C***CATEGORY D2C3, D3C3
C***TYPE COMPLEX (STRDI-S, DTRDI-D, CTRDI-C)
C***KEYWORDS DETERMINANT, INVERSE, LINEAR ALGEBRA, LINPACK,
C TRIANGULAR MATRIX
C***AUTHOR Moler, C. B., (U. of New Mexico)
C***DESCRIPTION
C
C CTRDI computes the determinant and inverse of a complex
C triangular matrix.
C
C On Entry
C
C T COMPLEX(LDT,N)
C T contains the triangular matrix. The zero
C elements of the matrix are not referenced, and
C the corresponding elements of the array can be
C used to store other information.
C
C LDT INTEGER
C LDT is the leading dimension of the array T.
C
C N INTEGER
C N is the order of the system.
C
C JOB INTEGER
C = 010 no det, inverse of lower triangular.
C = 011 no det, inverse of upper triangular.
C = 100 det, no inverse.
C = 110 det, inverse of lower triangular.
C = 111 det, inverse of upper triangular.
C
C On Return
C
C T inverse of original matrix if requested.
C Otherwise unchanged.
C
C DET COMPLEX(2)
C determinant of original matrix if requested.
C Otherwise not referenced.
C Determinant = DET(1) * 10.0**DET(2)
C with 1.0 .LE. CABS1(DET(1)) .LT. 10.0
C or DET(1) .EQ. 0.0 .
C
C INFO INTEGER
C INFO contains zero if the system is nonsingular
C and the inverse is requested.
C Otherwise INFO contains the index of
C a zero diagonal element of T.
C
C
C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
C Stewart, LINPACK Users' Guide, SIAM, 1979.
C***ROUTINES CALLED CAXPY, CSCAL
C***REVISION HISTORY (YYMMDD)
C 780814 DATE WRITTEN
C 890831 Modified array declarations. (WRB)
C 890831 REVISION DATE from Version 3.2
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900326 Removed duplicate information from DESCRIPTION section.
C (WRB)
C 920501 Reformatted the REFERENCES section. (WRB)
C***END PROLOGUE CTRDI
INTEGER LDT,N,JOB,INFO
COMPLEX T(LDT,*),DET(2)
C
COMPLEX TEMP
REAL TEN
INTEGER I,J,K,KB,KM1,KP1
COMPLEX ZDUM
REAL CABS1
CABS1(ZDUM) = ABS(REAL(ZDUM)) + ABS(AIMAG(ZDUM))
C***FIRST EXECUTABLE STATEMENT CTRDI
C
C COMPUTE DETERMINANT
C
IF (JOB/100 .EQ. 0) GO TO 70
DET(1) = (1.0E0,0.0E0)
DET(2) = (0.0E0,0.0E0)
TEN = 10.0E0
DO 50 I = 1, N
DET(1) = T(I,I)*DET(1)
IF (CABS1(DET(1)) .EQ. 0.0E0) GO TO 60
10 IF (CABS1(DET(1)) .GE. 1.0E0) GO TO 20
DET(1) = CMPLX(TEN,0.0E0)*DET(1)
DET(2) = DET(2) - (1.0E0,0.0E0)
GO TO 10
20 CONTINUE
30 IF (CABS1(DET(1)) .LT. TEN) GO TO 40
DET(1) = DET(1)/CMPLX(TEN,0.0E0)
DET(2) = DET(2) + (1.0E0,0.0E0)
GO TO 30
40 CONTINUE
50 CONTINUE
60 CONTINUE
70 CONTINUE
C
C COMPUTE INVERSE OF UPPER TRIANGULAR
C
IF (MOD(JOB/10,10) .EQ. 0) GO TO 170
IF (MOD(JOB,10) .EQ. 0) GO TO 120
DO 100 K = 1, N
INFO = K
IF (CABS1(T(K,K)) .EQ. 0.0E0) GO TO 110
T(K,K) = (1.0E0,0.0E0)/T(K,K)
TEMP = -T(K,K)
CALL CSCAL(K-1,TEMP,T(1,K),1)
KP1 = K + 1
IF (N .LT. KP1) GO TO 90
DO 80 J = KP1, N
TEMP = T(K,J)
T(K,J) = (0.0E0,0.0E0)
CALL CAXPY(K,TEMP,T(1,K),1,T(1,J),1)
80 CONTINUE
90 CONTINUE
100 CONTINUE
INFO = 0
110 CONTINUE
GO TO 160
120 CONTINUE
C
C COMPUTE INVERSE OF LOWER TRIANGULAR
C
DO 150 KB = 1, N
K = N + 1 - KB
INFO = K
IF (CABS1(T(K,K)) .EQ. 0.0E0) GO TO 180
T(K,K) = (1.0E0,0.0E0)/T(K,K)
TEMP = -T(K,K)
IF (K .NE. N) CALL CSCAL(N-K,TEMP,T(K+1,K),1)
KM1 = K - 1
IF (KM1 .LT. 1) GO TO 140
DO 130 J = 1, KM1
TEMP = T(K,J)
T(K,J) = (0.0E0,0.0E0)
CALL CAXPY(N-K+1,TEMP,T(K,K),1,T(K,J),1)
130 CONTINUE
140 CONTINUE
150 CONTINUE
INFO = 0
160 CONTINUE
170 CONTINUE
180 CONTINUE
RETURN
END