OpenLibm/slatec/dbesy.f

204 lines
6.3 KiB
FortranFixed
Raw Normal View History

*DECK DBESY
SUBROUTINE DBESY (X, FNU, N, Y)
C***BEGIN PROLOGUE DBESY
C***PURPOSE Implement forward recursion on the three term recursion
C relation for a sequence of non-negative order Bessel
C functions Y/SUB(FNU+I-1)/(X), I=1,...,N for real, positive
C X and non-negative orders FNU.
C***LIBRARY SLATEC
C***CATEGORY C10A3
C***TYPE DOUBLE PRECISION (BESY-S, DBESY-D)
C***KEYWORDS SPECIAL FUNCTIONS, Y BESSEL FUNCTION
C***AUTHOR Amos, D. E., (SNLA)
C***DESCRIPTION
C
C Abstract **** a double precision routine ****
C DBESY implements forward recursion on the three term
C recursion relation for a sequence of non-negative order Bessel
C functions Y/sub(FNU+I-1)/(X), I=1,N for real X .GT. 0.0D0 and
C non-negative orders FNU. If FNU .LT. NULIM, orders FNU and
C FNU+1 are obtained from DBSYNU which computes by a power
C series for X .LE. 2, the K Bessel function of an imaginary
C argument for 2 .LT. X .LE. 20 and the asymptotic expansion for
C X .GT. 20.
C
C If FNU .GE. NULIM, the uniform asymptotic expansion is coded
C in DASYJY for orders FNU and FNU+1 to start the recursion.
C NULIM is 70 or 100 depending on whether N=1 or N .GE. 2. An
C overflow test is made on the leading term of the asymptotic
C expansion before any extensive computation is done.
C
C The maximum number of significant digits obtainable
C is the smaller of 14 and the number of digits carried in
C double precision arithmetic.
C
C Description of Arguments
C
C Input
C X - X .GT. 0.0D0
C FNU - order of the initial Y function, FNU .GE. 0.0D0
C N - number of members in the sequence, N .GE. 1
C
C Output
C Y - a vector whose first N components contain values
C for the sequence Y(I)=Y/sub(FNU+I-1)/(X), I=1,N.
C
C Error Conditions
C Improper input arguments - a fatal error
C Overflow - a fatal error
C
C***REFERENCES F. W. J. Olver, Tables of Bessel Functions of Moderate
C or Large Orders, NPL Mathematical Tables 6, Her
C Majesty's Stationery Office, London, 1962.
C N. M. Temme, On the numerical evaluation of the modified
C Bessel function of the third kind, Journal of
C Computational Physics 19, (1975), pp. 324-337.
C N. M. Temme, On the numerical evaluation of the ordinary
C Bessel function of the second kind, Journal of
C Computational Physics 21, (1976), pp. 343-350.
C***ROUTINES CALLED D1MACH, DASYJY, DBESY0, DBESY1, DBSYNU, DYAIRY,
C I1MACH, XERMSG
C***REVISION HISTORY (YYMMDD)
C 800501 DATE WRITTEN
C 890531 Changed all specific intrinsics to generic. (WRB)
C 890911 Removed unnecessary intrinsics. (WRB)
C 890911 REVISION DATE from Version 3.2
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
C 920501 Reformatted the REFERENCES section. (WRB)
C***END PROLOGUE DBESY
C
EXTERNAL DYAIRY
INTEGER I, IFLW, J, N, NB, ND, NN, NUD, NULIM
INTEGER I1MACH
DOUBLE PRECISION AZN,CN,DNU,ELIM,FLGJY,FN,FNU,RAN,S,S1,S2,TM,TRX,
1 W,WK,W2N,X,XLIM,XXN,Y
DOUBLE PRECISION DBESY0, DBESY1, D1MACH
DIMENSION W(2), NULIM(2), Y(*), WK(7)
SAVE NULIM
DATA NULIM(1),NULIM(2) / 70 , 100 /
C***FIRST EXECUTABLE STATEMENT DBESY
NN = -I1MACH(15)
ELIM = 2.303D0*(NN*D1MACH(5)-3.0D0)
XLIM = D1MACH(1)*1.0D+3
IF (FNU.LT.0.0D0) GO TO 140
IF (X.LE.0.0D0) GO TO 150
IF (X.LT.XLIM) GO TO 170
IF (N.LT.1) GO TO 160
C
C ND IS A DUMMY VARIABLE FOR N
C
ND = N
NUD = INT(FNU)
DNU = FNU - NUD
NN = MIN(2,ND)
FN = FNU + N - 1
IF (FN.LT.2.0D0) GO TO 100
C
C OVERFLOW TEST (LEADING EXPONENTIAL OF ASYMPTOTIC EXPANSION)
C FOR THE LAST ORDER, FNU+N-1.GE.NULIM
C
XXN = X/FN
W2N = 1.0D0-XXN*XXN
IF(W2N.LE.0.0D0) GO TO 10
RAN = SQRT(W2N)
AZN = LOG((1.0D0+RAN)/XXN) - RAN
CN = FN*AZN
IF(CN.GT.ELIM) GO TO 170
10 CONTINUE
IF (NUD.LT.NULIM(NN)) GO TO 20
C
C ASYMPTOTIC EXPANSION FOR ORDERS FNU AND FNU+1.GE.NULIM
C
FLGJY = -1.0D0
CALL DASYJY(DYAIRY,X,FNU,FLGJY,NN,Y,WK,IFLW)
IF(IFLW.NE.0) GO TO 170
IF (NN.EQ.1) RETURN
TRX = 2.0D0/X
TM = (FNU+FNU+2.0D0)/X
GO TO 80
C
20 CONTINUE
IF (DNU.NE.0.0D0) GO TO 30
S1 = DBESY0(X)
IF (NUD.EQ.0 .AND. ND.EQ.1) GO TO 70
S2 = DBESY1(X)
GO TO 40
30 CONTINUE
NB = 2
IF (NUD.EQ.0 .AND. ND.EQ.1) NB = 1
CALL DBSYNU(X, DNU, NB, W)
S1 = W(1)
IF (NB.EQ.1) GO TO 70
S2 = W(2)
40 CONTINUE
TRX = 2.0D0/X
TM = (DNU+DNU+2.0D0)/X
C FORWARD RECUR FROM DNU TO FNU+1 TO GET Y(1) AND Y(2)
IF (ND.EQ.1) NUD = NUD - 1
IF (NUD.GT.0) GO TO 50
IF (ND.GT.1) GO TO 70
S1 = S2
GO TO 70
50 CONTINUE
DO 60 I=1,NUD
S = S2
S2 = TM*S2 - S1
S1 = S
TM = TM + TRX
60 CONTINUE
IF (ND.EQ.1) S1 = S2
70 CONTINUE
Y(1) = S1
IF (ND.EQ.1) RETURN
Y(2) = S2
80 CONTINUE
IF (ND.EQ.2) RETURN
C FORWARD RECUR FROM FNU+2 TO FNU+N-1
DO 90 I=3,ND
Y(I) = TM*Y(I-1) - Y(I-2)
TM = TM + TRX
90 CONTINUE
RETURN
C
100 CONTINUE
C OVERFLOW TEST
IF (FN.LE.1.0D0) GO TO 110
IF (-FN*(LOG(X)-0.693D0).GT.ELIM) GO TO 170
110 CONTINUE
IF (DNU.EQ.0.0D0) GO TO 120
CALL DBSYNU(X, FNU, ND, Y)
RETURN
120 CONTINUE
J = NUD
IF (J.EQ.1) GO TO 130
J = J + 1
Y(J) = DBESY0(X)
IF (ND.EQ.1) RETURN
J = J + 1
130 CONTINUE
Y(J) = DBESY1(X)
IF (ND.EQ.1) RETURN
TRX = 2.0D0/X
TM = TRX
GO TO 80
C
C
C
140 CONTINUE
CALL XERMSG ('SLATEC', 'DBESY', 'ORDER, FNU, LESS THAN ZERO', 2,
+ 1)
RETURN
150 CONTINUE
CALL XERMSG ('SLATEC', 'DBESY', 'X LESS THAN OR EQUAL TO ZERO',
+ 2, 1)
RETURN
160 CONTINUE
CALL XERMSG ('SLATEC', 'DBESY', 'N LESS THAN ONE', 2, 1)
RETURN
170 CONTINUE
CALL XERMSG ('SLATEC', 'DBESY',
+ 'OVERFLOW, FNU OR N TOO LARGE OR X TOO SMALL', 6, 1)
RETURN
END