OpenLibm/slatec/dbvpor.f

342 lines
13 KiB
FortranFixed
Raw Normal View History

*DECK DBVPOR
SUBROUTINE DBVPOR (Y, NROWY, NCOMP, XPTS, NXPTS, A, NROWA, ALPHA,
+ NIC, B, NROWB, BETA, NFC, IFLAG, Z, MXNON, P, NTP, IP, W, NIV,
+ YHP, U, V, COEF, S, STOWA, G, WORK, IWORK, NFCC)
C***BEGIN PROLOGUE DBVPOR
C***SUBSIDIARY
C***PURPOSE Subsidiary to DBVSUP
C***LIBRARY SLATEC
C***TYPE DOUBLE PRECISION (BVPOR-S, DBVPOR-D)
C***AUTHOR Watts, H. A., (SNLA)
C***DESCRIPTION
C
C **********************************************************************
C INPUT to DBVPOR (items not defined in DBVSUP comments)
C **********************************************************************
C
C NOPG = 0 -- orthonormalization points not pre-assigned
C = 1 -- orthonormalization points pre-assigned
C
C MXNON = maximum number of orthogonalizations allowed.
C
C NDISK = 0 -- in-core storage
C = 1 -- disk storage. Value of NTAPE in data statement
C is set to 13. If another value is desired,
C the data statement must be changed.
C
C INTEG = type of integrator and associated test to be used
C to determine when to orthonormalize.
C
C 1 -- use GRAM-SCHMIDT test and DDERKF
C 2 -- use GRAM-SCHMIDT test and DDEABM
C
C TOL = tolerance for allowable error in orthogonalization test.
C
C NPS = 0 normalize particular solution to unit length at each
C point of orthonormalization.
C = 1 do not normalize particular solution.
C
C NTP = must be .GE. NFC*(NFC+1)/2.
C
C NFCC = 2*NFC for special treatment of a COMPLEX*16 valued problem
C
C ICOCO = 0 skip final computations (superposition coefficients
C and, hence, boundary problem solution)
C = 1 calculate superposition coefficients and obtain
C solution to the boundary value problem
C
C **********************************************************************
C OUTPUT from DBVPOR
C **********************************************************************
C
C Y(NROWY,NXPTS) = solution at specified output points.
C
C MXNON = number of orthonormalizations performed by DBVPOR.
C
C Z(MXNON+1) = locations of orthonormalizations performed by DBVPOR.
C
C NIV = number of independent vectors returned from DMGSBV. Normally
C this parameter will be meaningful only when DMGSBV returns
C with MFLAG = 2.
C
C **********************************************************************
C
C The following variables are in the argument list because of
C variable dimensioning. In general, they contain no information of
C use to the user. The amount of storage set aside by the user must
C be greater than or equal to that indicated by the dimension
C statements. For the disk storage mode, NON = 0 and KPTS = 1,
C while for the in-core storage mode, NON = MXNON and KPTS = NXPTS.
C
C P(NTP,NON+1)
C IP(NFCC,NON+1)
C YHP(NCOMP,NFC+1) plus an additional column of the length NEQIVP
C U(NCOMP,NFC,KPTS)
C V(NCOMP,KPTS)
C W(NFCC,NON+1)
C COEF(NFCC)
C S(NFC+1)
C STOWA(NCOMP*(NFC+1)+NEQIVP+1)
C G(NCOMP)
C WORK(KKKWS)
C IWORK(LLLIWS)
C
C **********************************************************************
C SUBROUTINES used by DBVPOR
C DLSSUD -- solves an underdetermined system of linear
C equations. This routine is used to get a full
C set of initial conditions for integration.
C Called by DBVPOR.
C
C DVECS -- obtains starting vectors for special treatment
C of COMPLEX*16 valued problems, called by DBVPOR.
C
C DRKFAB -- routine which conducts integration using DDERKF or
C DDEABM.
C
C DSTWAY -- storage for backup capability, called by
C DBVPOR and DREORT.
C
C DSTOR1 -- storage at output points, called by DBVPOR,
C DRKFAB, DREORT and DSTWAY.
C
C DDOT -- single precision vector inner product routine,
C called by DBVPOR, DCOEF, DLSSUD, DMGSBV,
C DBKSOL, DREORT and DPRVEC.
C ** NOTE **
C a considerable improvement in speed can be achieved if a
C machine language version is used for DDOT.
C
C DCOEF -- computes the superposition constants from the
C boundary conditions at XFINAL.
C
C DBKSOL -- solves an upper triangular set of linear equations.
C
C **********************************************************************
C
C***SEE ALSO DBVSUP
C***ROUTINES CALLED DBKSOL, DCOEF, DDOT, DLSSUD, DRKFAB, DSTOR1,
C DSTWAY, DVECS
C***COMMON BLOCKS DML15T, DML18J, DML8SZ
C***REVISION HISTORY (YYMMDD)
C 750601 DATE WRITTEN
C 890531 Changed all specific intrinsics to generic. (WRB)
C 890831 Modified array declarations. (WRB)
C 890921 Realigned order of variables in certain COMMON blocks.
C (WRB)
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900328 Added TYPE section. (WRB)
C 910722 Updated AUTHOR section. (ALS)
C***END PROLOGUE DBVPOR
C
DOUBLE PRECISION DDOT
INTEGER I, I1, I2, IC, ICOCO, IFLAG, IGOFX, INDPVT, INFO, INHOMO,
1 INTEG, IRA, ISFLG, ISTKOP, IVP, J,
2 K, KNSWOT, KOD, KOP, KPTS, KWC, KWD, KWS, KWT, L, LOTJP, M,
3 MNSWOT, MXNON, MXNOND, N, NCOMP, NCOMP2, NCOMPD, NDISK, NDW,
4 NEQ, NEQIVP, NFC, NFCC, NFCCD, NFCD, NFCP1, NFCP2, NIC,
5 NICD, NIV, NN, NON, NOPG, NPS, NROWA, NROWB, NROWY, NSWOT,
6 NTAPE, NTP, NTPD, NUMORT, NXPTS, NXPTSD,
7 IP(NFCC,*), IWORK(*)
DOUBLE PRECISION A(NROWA,*), AE, ALPHA(*), B(NROWB,*),
1 BETA(*), C, COEF(*), G(*), P(NTP,*), PWCND, PX,
2 RE, S(*), STOWA(*), TND, TOL, U(NCOMP,NFC,*),
3 V(NCOMP,*), W(NFCC,*), WORK(*), X, XBEG, XEND, XOP,
4 XOT, XPTS(*), XSAV, Y(NROWY,*), YHP(NCOMP,*),
5 Z(*)
C
C ******************************************************************
C
COMMON /DML8SZ/ C,XSAV,IGOFX,INHOMO,IVP,NCOMPD,NFCD
COMMON /DML15T/ PX,PWCND,TND,X,XBEG,XEND,XOT,XOP,INFO(15),ISTKOP,
1 KNSWOT,KOP,LOTJP,MNSWOT,NSWOT
COMMON /DML18J/ AE,RE,TOL,NXPTSD,NICD,NOPG,MXNOND,NDISK,NTAPE,
1 NEQ,INDPVT,INTEG,NPS,NTPD,NEQIVP,NUMORT,NFCCD,
2 ICOCO
C
C *****************************************************************
C
C***FIRST EXECUTABLE STATEMENT DBVPOR
NFCP1 = NFC + 1
NUMORT = 0
C = 1.0D0
C
C ******************************************************************
C CALCULATE INITIAL CONDITIONS WHICH SATISFY
C A*YH(XINITIAL)=0 AND A*YP(XINITIAL)=ALPHA.
C WHEN NFC .NE. NFCC DLSSUD DEFINES VALUES YHP IN A MATRIX OF
C SIZE (NFCC+1)*NCOMP AND ,HENCE, OVERFLOWS THE STORAGE
C ALLOCATION INTO THE U ARRAY. HOWEVER, THIS IS OKAY SINCE
C PLENTY OF SPACE IS AVAILABLE IN U AND IT HAS NOT YET BEEN
C USED.
C
NDW = NROWA*NCOMP
KWS = NDW + NIC + 1
KWD = KWS + NIC
KWT = KWD + NIC
KWC = KWT + NIC
IFLAG = 0
CALL DLSSUD(A,YHP(1,NFCC+1),ALPHA,NIC,NCOMP,NROWA,YHP,NCOMP,IFLAG,
1 1,IRA,0,WORK(1),WORK(NDW+1),IWORK,WORK(KWS),WORK(KWD),
2 WORK(KWT),ISFLG,WORK(KWC))
IF (IFLAG .EQ. 1) GO TO 10
IFLAG = -4
GO TO 200
10 CONTINUE
IF (NFC .NE. NFCC)
1 CALL DVECS(NCOMP,NFC,YHP,WORK,IWORK,INHOMO,IFLAG)
IF (IFLAG .EQ. 1) GO TO 20
IFLAG = -5
GO TO 190
20 CONTINUE
C
C ************************************************************
C DETERMINE THE NUMBER OF DIFFERENTIAL EQUATIONS TO BE
C INTEGRATED, INITIALIZE VARIABLES FOR AUXILIARY INITIAL
C VALUE PROBLEM AND STORE INITIAL CONDITIONS.
C
NEQ = NCOMP*NFC
IF (INHOMO .EQ. 1) NEQ = NEQ + NCOMP
IVP = 0
IF (NEQIVP .EQ. 0) GO TO 40
IVP = NEQ
NEQ = NEQ + NEQIVP
NFCP2 = NFCP1
IF (INHOMO .EQ. 1) NFCP2 = NFCP1 + 1
DO 30 K = 1, NEQIVP
YHP(K,NFCP2) = ALPHA(NIC+K)
30 CONTINUE
40 CONTINUE
CALL DSTOR1(U,YHP,V,YHP(1,NFCP1),0,NDISK,NTAPE)
C
C ************************************************************
C SET UP DATA FOR THE ORTHONORMALIZATION TESTING PROCEDURE
C AND SAVE INITIAL CONDITIONS IN CASE A RESTART IS
C NECESSARY.
C
NSWOT = 1
KNSWOT = 0
LOTJP = 1
TND = LOG10(10.0D0*TOL)
PWCND = LOG10(SQRT(TOL))
X = XBEG
PX = X
XOT = XEND
XOP = X
KOP = 1
CALL DSTWAY(U,V,YHP,0,STOWA)
C
C ************************************************************
C ******** FORWARD INTEGRATION OF ALL INITIAL VALUE EQUATIONS
C **********
C ************************************************************
C
CALL DRKFAB(NCOMP,XPTS,NXPTS,NFC,IFLAG,Z,MXNON,P,NTP,IP,YHP,
1 NIV,U,V,W,S,STOWA,G,WORK,IWORK,NFCC)
IF (IFLAG .NE. 0 .OR. ICOCO .EQ. 0) GO TO 180
C
C *********************************************************
C **************** BACKWARD SWEEP TO OBTAIN SOLUTION
C *******************
C *********************************************************
C
C CALCULATE SUPERPOSITION COEFFICIENTS AT XFINAL.
C
C FOR THE DISK STORAGE VERSION, IT IS NOT NECESSARY TO
C READ U AND V AT THE LAST OUTPUT POINT, SINCE THE
C LOCAL COPY OF EACH STILL EXISTS.
C
KOD = 1
IF (NDISK .EQ. 0) KOD = NXPTS
I1 = 1 + NFCC*NFCC
I2 = I1 + NFCC
CALL DCOEF(U(1,1,KOD),V(1,KOD),NCOMP,NROWB,NFC,NIC,B,
1 BETA,COEF,INHOMO,RE,AE,WORK,WORK(I1),
2 WORK(I2),IWORK,IFLAG,NFCC)
C
C *********************************************************
C CALCULATE SOLUTION AT OUTPUT POINTS BY RECURRING
C BACKWARDS. AS WE RECUR BACKWARDS FROM XFINAL TO
C XINITIAL WE MUST CALCULATE NEW SUPERPOSITION
C COEFFICIENTS EACH TIME WE CROSS A POINT OF
C ORTHONORMALIZATION.
C
K = NUMORT
NCOMP2 = NCOMP/2
IC = 1
IF (NFC .NE. NFCC) IC = 2
DO 170 J = 1, NXPTS
KPTS = NXPTS - J + 1
KOD = KPTS
IF (NDISK .EQ. 1) KOD = 1
50 CONTINUE
C ...EXIT
IF (K .EQ. 0) GO TO 120
C ...EXIT
IF (XEND .GT. XBEG .AND. XPTS(KPTS) .GE. Z(K))
1 GO TO 120
C ...EXIT
IF (XEND .LT. XBEG .AND. XPTS(KPTS) .LE. Z(K))
1 GO TO 120
NON = K
IF (NDISK .EQ. 0) GO TO 60
NON = 1
BACKSPACE NTAPE
READ (NTAPE)
1 (IP(I,1), I = 1, NFCC),(P(I,1), I = 1, NTP)
BACKSPACE NTAPE
60 CONTINUE
IF (INHOMO .NE. 1) GO TO 90
IF (NDISK .EQ. 0) GO TO 70
BACKSPACE NTAPE
READ (NTAPE) (W(I,1), I = 1, NFCC)
BACKSPACE NTAPE
70 CONTINUE
DO 80 N = 1, NFCC
COEF(N) = COEF(N) - W(N,NON)
80 CONTINUE
90 CONTINUE
CALL DBKSOL(NFCC,P(1,NON),COEF)
DO 100 M = 1, NFCC
WORK(M) = COEF(M)
100 CONTINUE
DO 110 M = 1, NFCC
L = IP(M,NON)
COEF(L) = WORK(M)
110 CONTINUE
K = K - 1
GO TO 50
120 CONTINUE
IF (NDISK .EQ. 0) GO TO 130
BACKSPACE NTAPE
READ (NTAPE)
1 (V(I,1), I = 1, NCOMP),
2 ((U(I,M,1), I = 1, NCOMP), M = 1, NFC)
BACKSPACE NTAPE
130 CONTINUE
DO 140 N = 1, NCOMP
Y(N,KPTS) = V(N,KOD)
1 + DDOT(NFC,U(N,1,KOD),NCOMP,COEF,IC)
140 CONTINUE
IF (NFC .EQ. NFCC) GO TO 160
DO 150 N = 1, NCOMP2
NN = NCOMP2 + N
Y(N,KPTS) = Y(N,KPTS)
1 - DDOT(NFC,U(NN,1,KOD),NCOMP,
2 COEF(2),2)
Y(NN,KPTS) = Y(NN,KPTS)
1 + DDOT(NFC,U(N,1,KOD),NCOMP,
2 COEF(2),2)
150 CONTINUE
160 CONTINUE
170 CONTINUE
180 CONTINUE
190 CONTINUE
200 CONTINUE
C
C ******************************************************************
C
MXNON = NUMORT
RETURN
END