mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-03 23:43:41 +01:00
146 lines
5.3 KiB
FortranFixed
146 lines
5.3 KiB
FortranFixed
|
*DECK DCFOD
|
||
|
SUBROUTINE DCFOD (METH, ELCO, TESCO)
|
||
|
C***BEGIN PROLOGUE DCFOD
|
||
|
C***SUBSIDIARY
|
||
|
C***PURPOSE Subsidiary to DDEBDF
|
||
|
C***LIBRARY SLATEC
|
||
|
C***TYPE DOUBLE PRECISION (CFOD-S, DCFOD-D)
|
||
|
C***AUTHOR (UNKNOWN)
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C DCFOD defines coefficients needed in the integrator package DDEBDF
|
||
|
C
|
||
|
C***SEE ALSO DDEBDF
|
||
|
C***ROUTINES CALLED (NONE)
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 820301 DATE WRITTEN
|
||
|
C 890911 Removed unnecessary intrinsics. (WRB)
|
||
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C 900328 Added TYPE section. (WRB)
|
||
|
C***END PROLOGUE DCFOD
|
||
|
C
|
||
|
C
|
||
|
INTEGER I, IB, METH, NQ, NQM1, NQP1
|
||
|
DOUBLE PRECISION AGAMQ, ELCO, FNQ, FNQM1, PC, PINT, RAGQ,
|
||
|
1 RQ1FAC, RQFAC, TESCO, TSIGN, XPIN
|
||
|
DIMENSION ELCO(13,12),TESCO(3,12)
|
||
|
C ------------------------------------------------------------------
|
||
|
C DCFOD IS CALLED BY THE INTEGRATOR ROUTINE TO SET COEFFICIENTS
|
||
|
C NEEDED THERE. THE COEFFICIENTS FOR THE CURRENT METHOD, AS
|
||
|
C GIVEN BY THE VALUE OF METH, ARE SET FOR ALL ORDERS AND SAVED.
|
||
|
C THE MAXIMUM ORDER ASSUMED HERE IS 12 IF METH = 1 AND 5 IF METH =
|
||
|
C 2. (A SMALLER VALUE OF THE MAXIMUM ORDER IS ALSO ALLOWED.)
|
||
|
C DCFOD IS CALLED ONCE AT THE BEGINNING OF THE PROBLEM,
|
||
|
C AND IS NOT CALLED AGAIN UNLESS AND UNTIL METH IS CHANGED.
|
||
|
C
|
||
|
C THE ELCO ARRAY CONTAINS THE BASIC METHOD COEFFICIENTS.
|
||
|
C THE COEFFICIENTS EL(I), 1 .LE. I .LE. NQ+1, FOR THE METHOD OF
|
||
|
C ORDER NQ ARE STORED IN ELCO(I,NQ). THEY ARE GIVEN BY A
|
||
|
C GENERATING POLYNOMIAL, I.E.,
|
||
|
C L(X) = EL(1) + EL(2)*X + ... + EL(NQ+1)*X**NQ.
|
||
|
C FOR THE IMPLICIT ADAMS METHODS, L(X) IS GIVEN BY
|
||
|
C DL/DX = (X+1)*(X+2)*...*(X+NQ-1)/FACTORIAL(NQ-1), L(-1) =
|
||
|
C 0. FOR THE BDF METHODS, L(X) IS GIVEN BY
|
||
|
C L(X) = (X+1)*(X+2)* ... *(X+NQ)/K,
|
||
|
C WHERE K = FACTORIAL(NQ)*(1 + 1/2 + ... + 1/NQ).
|
||
|
C
|
||
|
C THE TESCO ARRAY CONTAINS TEST CONSTANTS USED FOR THE
|
||
|
C LOCAL ERROR TEST AND THE SELECTION OF STEP SIZE AND/OR ORDER.
|
||
|
C AT ORDER NQ, TESCO(K,NQ) IS USED FOR THE SELECTION OF STEP
|
||
|
C SIZE AT ORDER NQ - 1 IF K = 1, AT ORDER NQ IF K = 2, AND AT ORDER
|
||
|
C NQ + 1 IF K = 3.
|
||
|
C ------------------------------------------------------------------
|
||
|
DIMENSION PC(12)
|
||
|
C
|
||
|
C***FIRST EXECUTABLE STATEMENT DCFOD
|
||
|
GO TO (10,60), METH
|
||
|
C
|
||
|
10 CONTINUE
|
||
|
ELCO(1,1) = 1.0D0
|
||
|
ELCO(2,1) = 1.0D0
|
||
|
TESCO(1,1) = 0.0D0
|
||
|
TESCO(2,1) = 2.0D0
|
||
|
TESCO(1,2) = 1.0D0
|
||
|
TESCO(3,12) = 0.0D0
|
||
|
PC(1) = 1.0D0
|
||
|
RQFAC = 1.0D0
|
||
|
DO 50 NQ = 2, 12
|
||
|
C ------------------------------------------------------------
|
||
|
C THE PC ARRAY WILL CONTAIN THE COEFFICIENTS OF THE
|
||
|
C POLYNOMIAL P(X) = (X+1)*(X+2)*...*(X+NQ-1).
|
||
|
C INITIALLY, P(X) = 1.
|
||
|
C ------------------------------------------------------------
|
||
|
RQ1FAC = RQFAC
|
||
|
RQFAC = RQFAC/NQ
|
||
|
NQM1 = NQ - 1
|
||
|
FNQM1 = NQM1
|
||
|
NQP1 = NQ + 1
|
||
|
C FORM COEFFICIENTS OF P(X)*(X+NQ-1).
|
||
|
C ----------------------------------
|
||
|
PC(NQ) = 0.0D0
|
||
|
DO 20 IB = 1, NQM1
|
||
|
I = NQP1 - IB
|
||
|
PC(I) = PC(I-1) + FNQM1*PC(I)
|
||
|
20 CONTINUE
|
||
|
PC(1) = FNQM1*PC(1)
|
||
|
C COMPUTE INTEGRAL, -1 TO 0, OF P(X) AND X*P(X).
|
||
|
C -----------------------
|
||
|
PINT = PC(1)
|
||
|
XPIN = PC(1)/2.0D0
|
||
|
TSIGN = 1.0D0
|
||
|
DO 30 I = 2, NQ
|
||
|
TSIGN = -TSIGN
|
||
|
PINT = PINT + TSIGN*PC(I)/I
|
||
|
XPIN = XPIN + TSIGN*PC(I)/(I+1)
|
||
|
30 CONTINUE
|
||
|
C STORE COEFFICIENTS IN ELCO AND TESCO.
|
||
|
C --------------------------------
|
||
|
ELCO(1,NQ) = PINT*RQ1FAC
|
||
|
ELCO(2,NQ) = 1.0D0
|
||
|
DO 40 I = 2, NQ
|
||
|
ELCO(I+1,NQ) = RQ1FAC*PC(I)/I
|
||
|
40 CONTINUE
|
||
|
AGAMQ = RQFAC*XPIN
|
||
|
RAGQ = 1.0D0/AGAMQ
|
||
|
TESCO(2,NQ) = RAGQ
|
||
|
IF (NQ .LT. 12) TESCO(1,NQP1) = RAGQ*RQFAC/NQP1
|
||
|
TESCO(3,NQM1) = RAGQ
|
||
|
50 CONTINUE
|
||
|
GO TO 100
|
||
|
C
|
||
|
60 CONTINUE
|
||
|
PC(1) = 1.0D0
|
||
|
RQ1FAC = 1.0D0
|
||
|
DO 90 NQ = 1, 5
|
||
|
C ------------------------------------------------------------
|
||
|
C THE PC ARRAY WILL CONTAIN THE COEFFICIENTS OF THE
|
||
|
C POLYNOMIAL P(X) = (X+1)*(X+2)*...*(X+NQ).
|
||
|
C INITIALLY, P(X) = 1.
|
||
|
C ------------------------------------------------------------
|
||
|
FNQ = NQ
|
||
|
NQP1 = NQ + 1
|
||
|
C FORM COEFFICIENTS OF P(X)*(X+NQ).
|
||
|
C ------------------------------------
|
||
|
PC(NQP1) = 0.0D0
|
||
|
DO 70 IB = 1, NQ
|
||
|
I = NQ + 2 - IB
|
||
|
PC(I) = PC(I-1) + FNQ*PC(I)
|
||
|
70 CONTINUE
|
||
|
PC(1) = FNQ*PC(1)
|
||
|
C STORE COEFFICIENTS IN ELCO AND TESCO.
|
||
|
C --------------------------------
|
||
|
DO 80 I = 1, NQP1
|
||
|
ELCO(I,NQ) = PC(I)/PC(2)
|
||
|
80 CONTINUE
|
||
|
ELCO(2,NQ) = 1.0D0
|
||
|
TESCO(1,NQ) = RQ1FAC
|
||
|
TESCO(2,NQ) = NQP1/ELCO(1,NQ)
|
||
|
TESCO(3,NQ) = (NQ+2)/ELCO(1,NQ)
|
||
|
RQ1FAC = RQ1FAC/FNQ
|
||
|
90 CONTINUE
|
||
|
100 CONTINUE
|
||
|
RETURN
|
||
|
C ----------------------- END OF SUBROUTINE DCFOD
|
||
|
C -----------------------
|
||
|
END
|