mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-19 19:22:28 +01:00
171 lines
5.6 KiB
FortranFixed
171 lines
5.6 KiB
FortranFixed
|
*DECK DCHFDV
|
||
|
SUBROUTINE DCHFDV (X1, X2, F1, F2, D1, D2, NE, XE, FE, DE, NEXT,
|
||
|
+ IERR)
|
||
|
C***BEGIN PROLOGUE DCHFDV
|
||
|
C***PURPOSE Evaluate a cubic polynomial given in Hermite form and its
|
||
|
C first derivative at an array of points. While designed for
|
||
|
C use by DPCHFD, it may be useful directly as an evaluator
|
||
|
C for a piecewise cubic Hermite function in applications,
|
||
|
C such as graphing, where the interval is known in advance.
|
||
|
C If only function values are required, use DCHFEV instead.
|
||
|
C***LIBRARY SLATEC (PCHIP)
|
||
|
C***CATEGORY E3, H1
|
||
|
C***TYPE DOUBLE PRECISION (CHFDV-S, DCHFDV-D)
|
||
|
C***KEYWORDS CUBIC HERMITE DIFFERENTIATION, CUBIC HERMITE EVALUATION,
|
||
|
C CUBIC POLYNOMIAL EVALUATION, PCHIP
|
||
|
C***AUTHOR Fritsch, F. N., (LLNL)
|
||
|
C Lawrence Livermore National Laboratory
|
||
|
C P.O. Box 808 (L-316)
|
||
|
C Livermore, CA 94550
|
||
|
C FTS 532-4275, (510) 422-4275
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C DCHFDV: Cubic Hermite Function and Derivative Evaluator
|
||
|
C
|
||
|
C Evaluates the cubic polynomial determined by function values
|
||
|
C F1,F2 and derivatives D1,D2 on interval (X1,X2), together with
|
||
|
C its first derivative, at the points XE(J), J=1(1)NE.
|
||
|
C
|
||
|
C If only function values are required, use DCHFEV, instead.
|
||
|
C
|
||
|
C ----------------------------------------------------------------------
|
||
|
C
|
||
|
C Calling sequence:
|
||
|
C
|
||
|
C INTEGER NE, NEXT(2), IERR
|
||
|
C DOUBLE PRECISION X1, X2, F1, F2, D1, D2, XE(NE), FE(NE),
|
||
|
C DE(NE)
|
||
|
C
|
||
|
C CALL DCHFDV (X1,X2, F1,F2, D1,D2, NE, XE, FE, DE, NEXT, IERR)
|
||
|
C
|
||
|
C Parameters:
|
||
|
C
|
||
|
C X1,X2 -- (input) endpoints of interval of definition of cubic.
|
||
|
C (Error return if X1.EQ.X2 .)
|
||
|
C
|
||
|
C F1,F2 -- (input) values of function at X1 and X2, respectively.
|
||
|
C
|
||
|
C D1,D2 -- (input) values of derivative at X1 and X2, respectively.
|
||
|
C
|
||
|
C NE -- (input) number of evaluation points. (Error return if
|
||
|
C NE.LT.1 .)
|
||
|
C
|
||
|
C XE -- (input) real*8 array of points at which the functions are to
|
||
|
C be evaluated. If any of the XE are outside the interval
|
||
|
C [X1,X2], a warning error is returned in NEXT.
|
||
|
C
|
||
|
C FE -- (output) real*8 array of values of the cubic function
|
||
|
C defined by X1,X2, F1,F2, D1,D2 at the points XE.
|
||
|
C
|
||
|
C DE -- (output) real*8 array of values of the first derivative of
|
||
|
C the same function at the points XE.
|
||
|
C
|
||
|
C NEXT -- (output) integer array indicating number of extrapolation
|
||
|
C points:
|
||
|
C NEXT(1) = number of evaluation points to left of interval.
|
||
|
C NEXT(2) = number of evaluation points to right of interval.
|
||
|
C
|
||
|
C IERR -- (output) error flag.
|
||
|
C Normal return:
|
||
|
C IERR = 0 (no errors).
|
||
|
C "Recoverable" errors:
|
||
|
C IERR = -1 if NE.LT.1 .
|
||
|
C IERR = -2 if X1.EQ.X2 .
|
||
|
C (Output arrays have not been changed in either case.)
|
||
|
C
|
||
|
C***REFERENCES (NONE)
|
||
|
C***ROUTINES CALLED XERMSG
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 811019 DATE WRITTEN
|
||
|
C 820803 Minor cosmetic changes for release 1.
|
||
|
C 870707 Corrected XERROR calls for d.p. names(s).
|
||
|
C 870813 Minor cosmetic changes.
|
||
|
C 890411 Added SAVE statements (Vers. 3.2).
|
||
|
C 890531 Changed all specific intrinsics to generic. (WRB)
|
||
|
C 890831 Modified array declarations. (WRB)
|
||
|
C 891006 Cosmetic changes to prologue. (WRB)
|
||
|
C 891006 REVISION DATE from Version 3.2
|
||
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
|
||
|
C***END PROLOGUE DCHFDV
|
||
|
C Programming notes:
|
||
|
C
|
||
|
C To produce a single precision version, simply:
|
||
|
C a. Change DCHFDV to CHFDV wherever it occurs,
|
||
|
C b. Change the double precision declaration to real, and
|
||
|
C c. Change the constant ZERO to single precision.
|
||
|
C
|
||
|
C DECLARE ARGUMENTS.
|
||
|
C
|
||
|
INTEGER NE, NEXT(2), IERR
|
||
|
DOUBLE PRECISION X1, X2, F1, F2, D1, D2, XE(*), FE(*), DE(*)
|
||
|
C
|
||
|
C DECLARE LOCAL VARIABLES.
|
||
|
C
|
||
|
INTEGER I
|
||
|
DOUBLE PRECISION C2, C2T2, C3, C3T3, DEL1, DEL2, DELTA, H, X,
|
||
|
* XMI, XMA, ZERO
|
||
|
SAVE ZERO
|
||
|
DATA ZERO /0.D0/
|
||
|
C
|
||
|
C VALIDITY-CHECK ARGUMENTS.
|
||
|
C
|
||
|
C***FIRST EXECUTABLE STATEMENT DCHFDV
|
||
|
IF (NE .LT. 1) GO TO 5001
|
||
|
H = X2 - X1
|
||
|
IF (H .EQ. ZERO) GO TO 5002
|
||
|
C
|
||
|
C INITIALIZE.
|
||
|
C
|
||
|
IERR = 0
|
||
|
NEXT(1) = 0
|
||
|
NEXT(2) = 0
|
||
|
XMI = MIN(ZERO, H)
|
||
|
XMA = MAX(ZERO, H)
|
||
|
C
|
||
|
C COMPUTE CUBIC COEFFICIENTS (EXPANDED ABOUT X1).
|
||
|
C
|
||
|
DELTA = (F2 - F1)/H
|
||
|
DEL1 = (D1 - DELTA)/H
|
||
|
DEL2 = (D2 - DELTA)/H
|
||
|
C (DELTA IS NO LONGER NEEDED.)
|
||
|
C2 = -(DEL1+DEL1 + DEL2)
|
||
|
C2T2 = C2 + C2
|
||
|
C3 = (DEL1 + DEL2)/H
|
||
|
C (H, DEL1 AND DEL2 ARE NO LONGER NEEDED.)
|
||
|
C3T3 = C3+C3+C3
|
||
|
C
|
||
|
C EVALUATION LOOP.
|
||
|
C
|
||
|
DO 500 I = 1, NE
|
||
|
X = XE(I) - X1
|
||
|
FE(I) = F1 + X*(D1 + X*(C2 + X*C3))
|
||
|
DE(I) = D1 + X*(C2T2 + X*C3T3)
|
||
|
C COUNT EXTRAPOLATION POINTS.
|
||
|
IF ( X.LT.XMI ) NEXT(1) = NEXT(1) + 1
|
||
|
IF ( X.GT.XMA ) NEXT(2) = NEXT(2) + 1
|
||
|
C (NOTE REDUNDANCY--IF EITHER CONDITION IS TRUE, OTHER IS FALSE.)
|
||
|
500 CONTINUE
|
||
|
C
|
||
|
C NORMAL RETURN.
|
||
|
C
|
||
|
RETURN
|
||
|
C
|
||
|
C ERROR RETURNS.
|
||
|
C
|
||
|
5001 CONTINUE
|
||
|
C NE.LT.1 RETURN.
|
||
|
IERR = -1
|
||
|
CALL XERMSG ('SLATEC', 'DCHFDV',
|
||
|
+ 'NUMBER OF EVALUATION POINTS LESS THAN ONE', IERR, 1)
|
||
|
RETURN
|
||
|
C
|
||
|
5002 CONTINUE
|
||
|
C X1.EQ.X2 RETURN.
|
||
|
IERR = -2
|
||
|
CALL XERMSG ('SLATEC', 'DCHFDV', 'INTERVAL ENDPOINTS EQUAL',
|
||
|
+ IERR, 1)
|
||
|
RETURN
|
||
|
C------------- LAST LINE OF DCHFDV FOLLOWS -----------------------------
|
||
|
END
|