OpenLibm/slatec/defehl.f

92 lines
3 KiB
FortranFixed
Raw Normal View History

*DECK DEFEHL
SUBROUTINE DEFEHL (F, NEQ, T, Y, H, YP, F1, F2, F3, F4, F5, YS,
+ RPAR, IPAR)
C***BEGIN PROLOGUE DEFEHL
C***SUBSIDIARY
C***PURPOSE Subsidiary to DERKF
C***LIBRARY SLATEC
C***TYPE SINGLE PRECISION (DEFEHL-S, DFEHL-D)
C***AUTHOR Watts, H. A., (SNLA)
C***DESCRIPTION
C
C Fehlberg Fourth-Fifth order Runge-Kutta Method
C **********************************************************************
C
C DEFEHL integrates a system of NEQ first order
C ordinary differential equations of the form
C dU/DX = F(X,U)
C over one step when the vector Y(*) of initial values for U(*) and
C the vector YP(*) of initial derivatives, satisfying YP = F(T,Y),
C are given at the starting point X=T.
C
C DEFEHL advances the solution over the fixed step H and returns
C the fifth order (sixth order accurate locally) solution
C approximation at T+H in the array YS(*).
C F1,---,F5 are arrays of dimension NEQ which are needed
C for internal storage.
C The formulas have been grouped to control loss of significance.
C DEFEHL should be called with an H not smaller than 13 units of
C roundoff in T so that the various independent arguments can be
C distinguished.
C
C This subroutine has been written with all variables and statement
C numbers entirely compatible with DERKFS. For greater efficiency,
C the call to DEFEHL can be replaced by the module beginning with
C line 222 and extending to the last line just before the return
C statement.
C
C **********************************************************************
C
C***SEE ALSO DERKF
C***ROUTINES CALLED (NONE)
C***REVISION HISTORY (YYMMDD)
C 800501 DATE WRITTEN
C 890831 Modified array declarations. (WRB)
C 891009 Removed unreferenced statement label. (WRB)
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900328 Added TYPE section. (WRB)
C 910722 Updated AUTHOR section. (ALS)
C***END PROLOGUE DEFEHL
C
C
DIMENSION Y(*),YP(*),F1(*),F2(*),F3(*),F4(*),F5(*),
1 YS(*),RPAR(*),IPAR(*)
C
C***FIRST EXECUTABLE STATEMENT DEFEHL
CH=H/4.
DO 230 K=1,NEQ
230 YS(K)=Y(K)+CH*YP(K)
CALL F(T+CH,YS,F1,RPAR,IPAR)
C
CH=3.*H/32.
DO 240 K=1,NEQ
240 YS(K)=Y(K)+CH*(YP(K)+3.*F1(K))
CALL F(T+3.*H/8.,YS,F2,RPAR,IPAR)
C
CH=H/2197.
DO 250 K=1,NEQ
250 YS(K)=Y(K)+CH*(1932.*YP(K)+(7296.*F2(K)-7200.*F1(K)))
CALL F(T+12.*H/13.,YS,F3,RPAR,IPAR)
C
CH=H/4104.
DO 260 K=1,NEQ
260 YS(K)=Y(K)+CH*((8341.*YP(K)-845.*F3(K))+
1 (29440.*F2(K)-32832.*F1(K)))
CALL F(T+H,YS,F4,RPAR,IPAR)
C
CH=H/20520.
DO 270 K=1,NEQ
270 YS(K)=Y(K)+CH*((-6080.*YP(K)+(9295.*F3(K)-5643.*F4(K)))+
1 (41040.*F1(K)-28352.*F2(K)))
CALL F(T+H/2.,YS,F5,RPAR,IPAR)
C
C COMPUTE APPROXIMATE SOLUTION AT T+H
C
CH=H/7618050.
DO 290 K=1,NEQ
290 YS(K)=Y(K)+CH*((902880.*YP(K)+(3855735.*F3(K)-1371249.*F4(K)))+
1 (3953664.*F2(K)+277020.*F5(K)))
C
RETURN
END