OpenLibm/slatec/des.f

434 lines
14 KiB
FortranFixed
Raw Normal View History

*DECK DES
SUBROUTINE DES (F, NEQ, T, Y, TOUT, INFO, RTOL, ATOL, IDID, YPOUT,
+ YP, YY, WT, P, PHI, ALPHA, BETA, PSI, V, W, SIG, G, GI, H, EPS,
+ X, XOLD, HOLD, TOLD, DELSGN, TSTOP, TWOU, FOURU, START, PHASE1,
+ NORND, STIFF, INTOUT, NS, KORD, KOLD, INIT, KSTEPS, KLE4,
+ IQUIT, KPREV, IVC, IV, KGI, RPAR, IPAR)
C***BEGIN PROLOGUE DES
C***SUBSIDIARY
C***PURPOSE Subsidiary to DEABM
C***LIBRARY SLATEC
C***TYPE SINGLE PRECISION (DES-S, DDES-D)
C***AUTHOR Watts, H. A., (SNLA)
C***DESCRIPTION
C
C DEABM merely allocates storage for DES to relieve the user of the
C inconvenience of a long call list. Consequently DES is used as
C described in the comments for DEABM .
C
C***SEE ALSO DEABM
C***ROUTINES CALLED R1MACH, SINTRP, STEPS, XERMSG
C***REVISION HISTORY (YYMMDD)
C 800501 DATE WRITTEN
C 890531 Changed all specific intrinsics to generic. (WRB)
C 890831 Modified array declarations. (WRB)
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900328 Added TYPE section. (WRB)
C 900510 Convert XERRWV calls to XERMSG calls, replace GOTOs with
C IF-THEN-ELSEs. (RWC)
C 910722 Updated AUTHOR section. (ALS)
C***END PROLOGUE DES
C
LOGICAL STIFF,CRASH,START,PHASE1,NORND,INTOUT
C
DIMENSION Y(*),YY(*),WT(*),PHI(NEQ,16),P(*),YP(*),
1 YPOUT(*),PSI(12),ALPHA(12),BETA(12),SIG(13),V(12),W(12),G(13),
2 GI(11),IV(10),INFO(15),RTOL(*),ATOL(*),RPAR(*),IPAR(*)
CHARACTER*8 XERN1
CHARACTER*16 XERN3, XERN4
C
EXTERNAL F
C
C.......................................................................
C
C THE EXPENSE OF SOLVING THE PROBLEM IS MONITORED BY COUNTING THE
C NUMBER OF STEPS ATTEMPTED. WHEN THIS EXCEEDS MAXNUM, THE COUNTER
C IS RESET TO ZERO AND THE USER IS INFORMED ABOUT POSSIBLE EXCESSIVE
C WORK.
C
SAVE MAXNUM
DATA MAXNUM/500/
C
C.......................................................................
C
C***FIRST EXECUTABLE STATEMENT DES
IF (INFO(1) .EQ. 0) THEN
C
C ON THE FIRST CALL , PERFORM INITIALIZATION --
C DEFINE THE MACHINE UNIT ROUNDOFF QUANTITY U BY CALLING THE
C FUNCTION ROUTINE R1MACH. THE USER MUST MAKE SURE THAT THE
C VALUES SET IN R1MACH ARE RELEVANT TO THE COMPUTER BEING USED.
C
U=R1MACH(4)
C -- SET ASSOCIATED MACHINE DEPENDENT PARAMETERS
TWOU=2.*U
FOURU=4.*U
C -- SET TERMINATION FLAG
IQUIT=0
C -- SET INITIALIZATION INDICATOR
INIT=0
C -- SET COUNTER FOR ATTEMPTED STEPS
KSTEPS=0
C -- SET INDICATOR FOR INTERMEDIATE-OUTPUT
INTOUT= .FALSE.
C -- SET INDICATOR FOR STIFFNESS DETECTION
STIFF= .FALSE.
C -- SET STEP COUNTER FOR STIFFNESS DETECTION
KLE4=0
C -- SET INDICATORS FOR STEPS CODE
START= .TRUE.
PHASE1= .TRUE.
NORND= .TRUE.
C -- RESET INFO(1) FOR SUBSEQUENT CALLS
INFO(1)=1
ENDIF
C
C.......................................................................
C
C CHECK VALIDITY OF INPUT PARAMETERS ON EACH ENTRY
C
IF (INFO(1) .NE. 0 .AND. INFO(1) .NE. 1) THEN
WRITE (XERN1, '(I8)') INFO(1)
CALL XERMSG ('SLATEC', 'DES',
* 'IN DEABM, INFO(1) MUST BE ' //
* 'SET TO 0 FOR THE START OF A NEW PROBLEM, AND MUST BE ' //
* 'SET TO 1 FOLLOWING AN INTERRUPTED TASK. YOU ARE ' //
* 'ATTEMPTING TO CONTINUE THE INTEGRATION ILLEGALLY BY ' //
* 'CALLING THE CODE WITH INFO(1) = ' // XERN1, 3, 1)
IDID=-33
ENDIF
C
IF (INFO(2) .NE. 0 .AND. INFO(2) .NE. 1) THEN
WRITE (XERN1, '(I8)') INFO(2)
CALL XERMSG ('SLATEC', 'DES',
* 'IN DEABM, INFO(2) MUST BE 0 OR 1 ' //
* 'INDICATING SCALAR AND VECTOR ERROR TOLERANCES, ' //
* 'RESPECTIVELY. YOU HAVE CALLED THE CODE WITH INFO(2) = ' //
* XERN1, 4, 1)
IDID=-33
ENDIF
C
IF (INFO(3) .NE. 0 .AND. INFO(3) .NE. 1) THEN
WRITE (XERN1, '(I8)') INFO(3)
CALL XERMSG ('SLATEC', 'DES',
* 'IN DEABM, INFO(3) MUST BE 0 OR 1 ' //
* 'INDICATING THE INTERVAL OR INTERMEDIATE-OUTPUT MODE OF ' //
* 'INTEGRATION, RESPECTIVELY. YOU HAVE CALLED THE CODE ' //
* 'WITH INFO(3) = ' // XERN1, 5, 1)
IDID=-33
ENDIF
C
IF (INFO(4) .NE. 0 .AND. INFO(4) .NE. 1) THEN
WRITE (XERN1, '(I8)') INFO(4)
CALL XERMSG ('SLATEC', 'DES',
* 'IN DEABM, INFO(4) MUST BE 0 OR 1 ' //
* 'INDICATING WHETHER OR NOT THE INTEGRATION INTERVAL IS ' //
* 'TO BE RESTRICTED BY A POINT TSTOP. YOU HAVE CALLED ' //
* 'THE CODE WITH INFO(4) = ' // XERN1, 14, 1)
IDID=-33
ENDIF
C
IF (NEQ .LT. 1) THEN
WRITE (XERN1, '(I8)') NEQ
CALL XERMSG ('SLATEC', 'DES',
* 'IN DEABM, THE NUMBER OF EQUATIONS ' //
* 'NEQ MUST BE A POSITIVE INTEGER. YOU HAVE CALLED THE ' //
* 'CODE WITH NEQ = ' // XERN1, 6, 1)
IDID=-33
ENDIF
C
NRTOLP = 0
NATOLP = 0
DO 90 K=1,NEQ
IF (NRTOLP .EQ. 0 .AND. RTOL(K) .LT. 0.) THEN
WRITE (XERN1, '(I8)') K
WRITE (XERN3, '(1PE15.6)') RTOL(K)
CALL XERMSG ('SLATEC', 'DES',
* 'IN DEABM, THE RELATIVE ERROR ' //
* 'TOLERANCES RTOL MUST BE NON-NEGATIVE. YOU HAVE ' //
* 'CALLED THE CODE WITH RTOL(' // XERN1 // ') = ' //
* XERN3 // '. IN THE CASE OF VECTOR ERROR TOLERANCES, ' //
* 'NO FURTHER CHECKING OF RTOL COMPONENTS IS DONE.', 7, 1)
IDID = -33
NRTOLP = 1
ENDIF
C
IF (NATOLP .EQ. 0 .AND. ATOL(K) .LT. 0.) THEN
WRITE (XERN1, '(I8)') K
WRITE (XERN3, '(1PE15.6)') ATOL(K)
CALL XERMSG ('SLATEC', 'DES',
* 'IN DEABM, THE ABSOLUTE ERROR ' //
* 'TOLERANCES ATOL MUST BE NON-NEGATIVE. YOU HAVE ' //
* 'CALLED THE CODE WITH ATOL(' // XERN1 // ') = ' //
* XERN3 // '. IN THE CASE OF VECTOR ERROR TOLERANCES, ' //
* 'NO FURTHER CHECKING OF ATOL COMPONENTS IS DONE.', 8, 1)
IDID = -33
NATOLP = 1
ENDIF
C
IF (INFO(2) .EQ. 0) GO TO 100
IF (NATOLP.GT.0 .AND. NRTOLP.GT.0) GO TO 100
90 CONTINUE
C
100 IF (INFO(4) .EQ. 1) THEN
IF (SIGN(1.,TOUT-T) .NE. SIGN(1.,TSTOP-T)
1 .OR. ABS(TOUT-T) .GT. ABS(TSTOP-T)) THEN
WRITE (XERN3, '(1PE15.6)') TOUT
WRITE (XERN4, '(1PE15.6)') TSTOP
CALL XERMSG ('SLATEC', 'DES',
* 'IN DEABM, YOU HAVE CALLED THE ' //
* 'CODE WITH TOUT = ' // XERN3 // ' BUT YOU HAVE ' //
* 'ALSO TOLD THE CODE (INFO(4) = 1) NOT TO INTEGRATE ' //
* 'PAST THE POINT TSTOP = ' // XERN4 // ' THESE ' //
* 'INSTRUCTIONS CONFLICT.', 14, 1)
IDID=-33
ENDIF
ENDIF
C
C CHECK SOME CONTINUATION POSSIBILITIES
C
IF (INIT .NE. 0) THEN
IF (T .EQ. TOUT) THEN
WRITE (XERN3, '(1PE15.6)') T
CALL XERMSG ('SLATEC', 'DES',
* 'IN DEABM, YOU HAVE CALLED THE ' //
* 'CODE WITH T = TOUT = ' // XERN3 // '$$THIS IS NOT ' //
* 'ALLOWED ON CONTINUATION CALLS.', 9, 1)
IDID=-33
ENDIF
C
IF (T .NE. TOLD) THEN
WRITE (XERN3, '(1PE15.6)') TOLD
WRITE (XERN4, '(1PE15.6)') T
CALL XERMSG ('SLATEC', 'DES',
* 'IN DEABM, YOU HAVE CHANGED THE ' //
* 'VALUE OF T FROM ' // XERN3 // ' TO ' // XERN4 //
* ' THIS IS NOT ALLOWED ON CONTINUATION CALLS.', 10, 1)
IDID=-33
ENDIF
C
IF (INIT .NE. 1) THEN
IF (DELSGN*(TOUT-T) .LT. 0.) THEN
WRITE (XERN3, '(1PE15.6)') TOUT
CALL XERMSG ('SLATEC', 'DES',
* 'IN DEABM, BY CALLING THE ' //
* 'CODE WITH TOUT = ' // XERN3 // ' YOU ARE ' //
* 'ATTEMPTING TO CHANGE THE DIRECTION OF ' //
* 'INTEGRATION.$$THIS IS NOT ALLOWED WITHOUT ' //
* 'RESTARTING.', 11, 1)
IDID=-33
ENDIF
ENDIF
ENDIF
C
C INVALID INPUT DETECTED
C
IF (IDID .EQ. (-33)) THEN
IF (IQUIT .NE. (-33)) THEN
IQUIT = -33
INFO(1) = -1
ELSE
CALL XERMSG ('SLATEC', 'DES',
* 'IN DEABM, INVALID INPUT WAS ' //
* 'DETECTED ON SUCCESSIVE ENTRIES. IT IS IMPOSSIBLE ' //
* 'TO PROCEED BECAUSE YOU HAVE NOT CORRECTED THE ' //
* 'PROBLEM, SO EXECUTION IS BEING TERMINATED.', 12, 2)
ENDIF
RETURN
ENDIF
C
C.......................................................................
C
C RTOL = ATOL = 0. IS ALLOWED AS VALID INPUT AND INTERPRETED AS
C ASKING FOR THE MOST ACCURATE SOLUTION POSSIBLE. IN THIS CASE,
C THE RELATIVE ERROR TOLERANCE RTOL IS RESET TO THE SMALLEST VALUE
C FOURU WHICH IS LIKELY TO BE REASONABLE FOR THIS METHOD AND MACHINE
C
DO 180 K=1,NEQ
IF (RTOL(K)+ATOL(K) .GT. 0.) GO TO 170
RTOL(K)=FOURU
IDID=-2
170 IF (INFO(2) .EQ. 0) GO TO 190
180 CONTINUE
C
190 IF (IDID .NE. (-2)) GO TO 200
C RTOL=ATOL=0 ON INPUT, SO RTOL IS CHANGED TO A
C SMALL POSITIVE VALUE
INFO(1)=-1
RETURN
C
C BRANCH ON STATUS OF INITIALIZATION INDICATOR
C INIT=0 MEANS INITIAL DERIVATIVES AND NOMINAL STEP SIZE
C AND DIRECTION NOT YET SET
C INIT=1 MEANS NOMINAL STEP SIZE AND DIRECTION NOT YET SET
C INIT=2 MEANS NO FURTHER INITIALIZATION REQUIRED
C
200 IF (INIT .EQ. 0) GO TO 210
IF (INIT .EQ. 1) GO TO 220
GO TO 240
C
C.......................................................................
C
C MORE INITIALIZATION --
C -- EVALUATE INITIAL DERIVATIVES
C
210 INIT=1
A=T
CALL F(A,Y,YP,RPAR,IPAR)
IF (T .NE. TOUT) GO TO 220
IDID=2
DO 215 L = 1,NEQ
215 YPOUT(L) = YP(L)
TOLD=T
RETURN
C
C -- SET INDEPENDENT AND DEPENDENT VARIABLES
C X AND YY(*) FOR STEPS
C -- SET SIGN OF INTEGRATION DIRECTION
C -- INITIALIZE THE STEP SIZE
C
220 INIT = 2
X = T
DO 230 L = 1,NEQ
230 YY(L) = Y(L)
DELSGN = SIGN(1.0,TOUT-T)
H = SIGN(MAX(FOURU*ABS(X),ABS(TOUT-X)),TOUT-X)
C
C.......................................................................
C
C ON EACH CALL SET INFORMATION WHICH DETERMINES THE ALLOWED INTERVAL
C OF INTEGRATION BEFORE RETURNING WITH AN ANSWER AT TOUT
C
240 DEL = TOUT - T
ABSDEL = ABS(DEL)
C
C.......................................................................
C
C IF ALREADY PAST OUTPUT POINT, INTERPOLATE AND RETURN
C
250 IF(ABS(X-T) .LT. ABSDEL) GO TO 260
CALL SINTRP(X,YY,TOUT,Y,YPOUT,NEQ,KOLD,PHI,IVC,IV,KGI,GI,
1 ALPHA,G,W,XOLD,P)
IDID = 3
IF (X .NE. TOUT) GO TO 255
IDID = 2
INTOUT = .FALSE.
255 T = TOUT
TOLD = T
RETURN
C
C IF CANNOT GO PAST TSTOP AND SUFFICIENTLY CLOSE,
C EXTRAPOLATE AND RETURN
C
260 IF (INFO(4) .NE. 1) GO TO 280
IF (ABS(TSTOP-X) .GE. FOURU*ABS(X)) GO TO 280
DT = TOUT - X
DO 270 L = 1,NEQ
270 Y(L) = YY(L) + DT*YP(L)
CALL F(TOUT,Y,YPOUT,RPAR,IPAR)
IDID = 3
T = TOUT
TOLD = T
RETURN
C
280 IF (INFO(3) .EQ. 0 .OR. .NOT.INTOUT) GO TO 300
C
C INTERMEDIATE-OUTPUT MODE
C
IDID = 1
DO 290 L = 1,NEQ
Y(L)=YY(L)
290 YPOUT(L) = YP(L)
T = X
TOLD = T
INTOUT = .FALSE.
RETURN
C
C.......................................................................
C
C MONITOR NUMBER OF STEPS ATTEMPTED
C
300 IF (KSTEPS .LE. MAXNUM) GO TO 330
C
C A SIGNIFICANT AMOUNT OF WORK HAS BEEN EXPENDED
IDID=-1
KSTEPS=0
IF (.NOT. STIFF) GO TO 310
C
C PROBLEM APPEARS TO BE STIFF
IDID=-4
STIFF= .FALSE.
KLE4=0
C
310 DO 320 L = 1,NEQ
Y(L) = YY(L)
320 YPOUT(L) = YP(L)
T = X
TOLD = T
INFO(1) = -1
INTOUT = .FALSE.
RETURN
C
C.......................................................................
C
C LIMIT STEP SIZE, SET WEIGHT VECTOR AND TAKE A STEP
C
330 HA = ABS(H)
IF (INFO(4) .NE. 1) GO TO 340
HA = MIN(HA,ABS(TSTOP-X))
340 H = SIGN(HA,H)
EPS = 1.0
LTOL = 1
DO 350 L = 1,NEQ
IF (INFO(2) .EQ. 1) LTOL = L
WT(L) = RTOL(LTOL)*ABS(YY(L)) + ATOL(LTOL)
IF (WT(L) .LE. 0.0) GO TO 360
350 CONTINUE
GO TO 380
C
C RELATIVE ERROR CRITERION INAPPROPRIATE
360 IDID = -3
DO 370 L = 1,NEQ
Y(L) = YY(L)
370 YPOUT(L) = YP(L)
T = X
TOLD = T
INFO(1) = -1
INTOUT = .FALSE.
RETURN
C
380 CALL STEPS(F,NEQ,YY,X,H,EPS,WT,START,HOLD,KORD,KOLD,CRASH,PHI,P,
1 YP,PSI,ALPHA,BETA,SIG,V,W,G,PHASE1,NS,NORND,KSTEPS,
2 TWOU,FOURU,XOLD,KPREV,IVC,IV,KGI,GI,RPAR,IPAR)
C
C.......................................................................
C
IF(.NOT.CRASH) GO TO 420
C
C TOLERANCES TOO SMALL
IDID = -2
RTOL(1) = EPS*RTOL(1)
ATOL(1) = EPS*ATOL(1)
IF (INFO(2) .EQ. 0) GO TO 400
DO 390 L = 2,NEQ
RTOL(L) = EPS*RTOL(L)
390 ATOL(L) = EPS*ATOL(L)
400 DO 410 L = 1,NEQ
Y(L) = YY(L)
410 YPOUT(L) = YP(L)
T = X
TOLD = T
INFO(1) = -1
INTOUT = .FALSE.
RETURN
C
C (STIFFNESS TEST) COUNT NUMBER OF CONSECUTIVE STEPS TAKEN WITH THE
C ORDER OF THE METHOD BEING LESS OR EQUAL TO FOUR
C
420 KLE4 = KLE4 + 1
IF(KOLD .GT. 4) KLE4 = 0
IF(KLE4 .GE. 50) STIFF = .TRUE.
INTOUT = .TRUE.
GO TO 250
END