mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-03 23:43:41 +01:00
130 lines
4.3 KiB
FortranFixed
130 lines
4.3 KiB
FortranFixed
|
*DECK DGAMIC
|
||
|
DOUBLE PRECISION FUNCTION DGAMIC (A, X)
|
||
|
C***BEGIN PROLOGUE DGAMIC
|
||
|
C***PURPOSE Calculate the complementary incomplete Gamma function.
|
||
|
C***LIBRARY SLATEC (FNLIB)
|
||
|
C***CATEGORY C7E
|
||
|
C***TYPE DOUBLE PRECISION (GAMIC-S, DGAMIC-D)
|
||
|
C***KEYWORDS COMPLEMENTARY INCOMPLETE GAMMA FUNCTION, FNLIB,
|
||
|
C SPECIAL FUNCTIONS
|
||
|
C***AUTHOR Fullerton, W., (LANL)
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C Evaluate the complementary incomplete Gamma function
|
||
|
C
|
||
|
C DGAMIC = integral from X to infinity of EXP(-T) * T**(A-1.) .
|
||
|
C
|
||
|
C DGAMIC is evaluated for arbitrary real values of A and for non-
|
||
|
C negative values of X (even though DGAMIC is defined for X .LT.
|
||
|
C 0.0), except that for X = 0 and A .LE. 0.0, DGAMIC is undefined.
|
||
|
C
|
||
|
C DGAMIC, A, and X are DOUBLE PRECISION.
|
||
|
C
|
||
|
C A slight deterioration of 2 or 3 digits accuracy will occur when
|
||
|
C DGAMIC is very large or very small in absolute value, because log-
|
||
|
C arithmic variables are used. Also, if the parameter A is very close
|
||
|
C to a negative INTEGER (but not a negative integer), there is a loss
|
||
|
C of accuracy, which is reported if the result is less than half
|
||
|
C machine precision.
|
||
|
C
|
||
|
C***REFERENCES W. Gautschi, A computational procedure for incomplete
|
||
|
C gamma functions, ACM Transactions on Mathematical
|
||
|
C Software 5, 4 (December 1979), pp. 466-481.
|
||
|
C W. Gautschi, Incomplete gamma functions, Algorithm 542,
|
||
|
C ACM Transactions on Mathematical Software 5, 4
|
||
|
C (December 1979), pp. 482-489.
|
||
|
C***ROUTINES CALLED D1MACH, D9GMIC, D9GMIT, D9LGIC, D9LGIT, DLGAMS,
|
||
|
C DLNGAM, XERCLR, XERMSG
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 770701 DATE WRITTEN
|
||
|
C 890531 Changed all specific intrinsics to generic. (WRB)
|
||
|
C 890531 REVISION DATE from Version 3.2
|
||
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
|
||
|
C 920528 DESCRIPTION and REFERENCES sections revised. (WRB)
|
||
|
C***END PROLOGUE DGAMIC
|
||
|
DOUBLE PRECISION A, X, AEPS, AINTA, ALGAP1, ALNEPS, ALNGS, ALX,
|
||
|
1 BOT, E, EPS, GSTAR, H, SGA, SGNG, SGNGAM, SGNGS, SQEPS, T,
|
||
|
2 D1MACH, DLNGAM, D9GMIC, D9GMIT, D9LGIC, D9LGIT
|
||
|
LOGICAL FIRST
|
||
|
SAVE EPS, SQEPS, ALNEPS, BOT, FIRST
|
||
|
DATA FIRST /.TRUE./
|
||
|
C***FIRST EXECUTABLE STATEMENT DGAMIC
|
||
|
IF (FIRST) THEN
|
||
|
EPS = 0.5D0*D1MACH(3)
|
||
|
SQEPS = SQRT(D1MACH(4))
|
||
|
ALNEPS = -LOG (D1MACH(3))
|
||
|
BOT = LOG (D1MACH(1))
|
||
|
ENDIF
|
||
|
FIRST = .FALSE.
|
||
|
C
|
||
|
IF (X .LT. 0.D0) CALL XERMSG ('SLATEC', 'DGAMIC', 'X IS NEGATIVE'
|
||
|
+ , 2, 2)
|
||
|
C
|
||
|
IF (X.GT.0.D0) GO TO 20
|
||
|
IF (A .LE. 0.D0) CALL XERMSG ('SLATEC', 'DGAMIC',
|
||
|
+ 'X = 0 AND A LE 0 SO DGAMIC IS UNDEFINED', 3, 2)
|
||
|
C
|
||
|
DGAMIC = EXP (DLNGAM(A+1.D0) - LOG(A))
|
||
|
RETURN
|
||
|
C
|
||
|
20 ALX = LOG (X)
|
||
|
SGA = 1.0D0
|
||
|
IF (A.NE.0.D0) SGA = SIGN (1.0D0, A)
|
||
|
AINTA = AINT (A + 0.5D0*SGA)
|
||
|
AEPS = A - AINTA
|
||
|
C
|
||
|
IZERO = 0
|
||
|
IF (X.GE.1.0D0) GO TO 40
|
||
|
C
|
||
|
IF (A.GT.0.5D0 .OR. ABS(AEPS).GT.0.001D0) GO TO 30
|
||
|
E = 2.0D0
|
||
|
IF (-AINTA.GT.1.D0) E = 2.D0*(-AINTA+2.D0)/(AINTA*AINTA-1.0D0)
|
||
|
E = E - ALX * X**(-0.001D0)
|
||
|
IF (E*ABS(AEPS).GT.EPS) GO TO 30
|
||
|
C
|
||
|
DGAMIC = D9GMIC (A, X, ALX)
|
||
|
RETURN
|
||
|
C
|
||
|
30 CALL DLGAMS (A+1.0D0, ALGAP1, SGNGAM)
|
||
|
GSTAR = D9GMIT (A, X, ALGAP1, SGNGAM, ALX)
|
||
|
IF (GSTAR.EQ.0.D0) IZERO = 1
|
||
|
IF (GSTAR.NE.0.D0) ALNGS = LOG (ABS(GSTAR))
|
||
|
IF (GSTAR.NE.0.D0) SGNGS = SIGN (1.0D0, GSTAR)
|
||
|
GO TO 50
|
||
|
C
|
||
|
40 IF (A.LT.X) DGAMIC = EXP (D9LGIC(A, X, ALX))
|
||
|
IF (A.LT.X) RETURN
|
||
|
C
|
||
|
SGNGAM = 1.0D0
|
||
|
ALGAP1 = DLNGAM (A+1.0D0)
|
||
|
SGNGS = 1.0D0
|
||
|
ALNGS = D9LGIT (A, X, ALGAP1)
|
||
|
C
|
||
|
C EVALUATION OF DGAMIC(A,X) IN TERMS OF TRICOMI-S INCOMPLETE GAMMA FN.
|
||
|
C
|
||
|
50 H = 1.D0
|
||
|
IF (IZERO.EQ.1) GO TO 60
|
||
|
C
|
||
|
T = A*ALX + ALNGS
|
||
|
IF (T.GT.ALNEPS) GO TO 70
|
||
|
IF (T.GT.(-ALNEPS)) H = 1.0D0 - SGNGS*EXP(T)
|
||
|
C
|
||
|
IF (ABS(H).LT.SQEPS) CALL XERCLR
|
||
|
IF (ABS(H) .LT. SQEPS) CALL XERMSG ('SLATEC', 'DGAMIC',
|
||
|
+ 'RESULT LT HALF PRECISION', 1, 1)
|
||
|
C
|
||
|
60 SGNG = SIGN (1.0D0, H) * SGA * SGNGAM
|
||
|
T = LOG(ABS(H)) + ALGAP1 - LOG(ABS(A))
|
||
|
IF (T.LT.BOT) CALL XERCLR
|
||
|
DGAMIC = SGNG * EXP(T)
|
||
|
RETURN
|
||
|
C
|
||
|
70 SGNG = -SGNGS * SGA * SGNGAM
|
||
|
T = T + ALGAP1 - LOG(ABS(A))
|
||
|
IF (T.LT.BOT) CALL XERCLR
|
||
|
DGAMIC = SGNG * EXP(T)
|
||
|
RETURN
|
||
|
C
|
||
|
END
|