OpenLibm/slatec/dgamic.f

130 lines
4.3 KiB
FortranFixed
Raw Normal View History

*DECK DGAMIC
DOUBLE PRECISION FUNCTION DGAMIC (A, X)
C***BEGIN PROLOGUE DGAMIC
C***PURPOSE Calculate the complementary incomplete Gamma function.
C***LIBRARY SLATEC (FNLIB)
C***CATEGORY C7E
C***TYPE DOUBLE PRECISION (GAMIC-S, DGAMIC-D)
C***KEYWORDS COMPLEMENTARY INCOMPLETE GAMMA FUNCTION, FNLIB,
C SPECIAL FUNCTIONS
C***AUTHOR Fullerton, W., (LANL)
C***DESCRIPTION
C
C Evaluate the complementary incomplete Gamma function
C
C DGAMIC = integral from X to infinity of EXP(-T) * T**(A-1.) .
C
C DGAMIC is evaluated for arbitrary real values of A and for non-
C negative values of X (even though DGAMIC is defined for X .LT.
C 0.0), except that for X = 0 and A .LE. 0.0, DGAMIC is undefined.
C
C DGAMIC, A, and X are DOUBLE PRECISION.
C
C A slight deterioration of 2 or 3 digits accuracy will occur when
C DGAMIC is very large or very small in absolute value, because log-
C arithmic variables are used. Also, if the parameter A is very close
C to a negative INTEGER (but not a negative integer), there is a loss
C of accuracy, which is reported if the result is less than half
C machine precision.
C
C***REFERENCES W. Gautschi, A computational procedure for incomplete
C gamma functions, ACM Transactions on Mathematical
C Software 5, 4 (December 1979), pp. 466-481.
C W. Gautschi, Incomplete gamma functions, Algorithm 542,
C ACM Transactions on Mathematical Software 5, 4
C (December 1979), pp. 482-489.
C***ROUTINES CALLED D1MACH, D9GMIC, D9GMIT, D9LGIC, D9LGIT, DLGAMS,
C DLNGAM, XERCLR, XERMSG
C***REVISION HISTORY (YYMMDD)
C 770701 DATE WRITTEN
C 890531 Changed all specific intrinsics to generic. (WRB)
C 890531 REVISION DATE from Version 3.2
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
C 920528 DESCRIPTION and REFERENCES sections revised. (WRB)
C***END PROLOGUE DGAMIC
DOUBLE PRECISION A, X, AEPS, AINTA, ALGAP1, ALNEPS, ALNGS, ALX,
1 BOT, E, EPS, GSTAR, H, SGA, SGNG, SGNGAM, SGNGS, SQEPS, T,
2 D1MACH, DLNGAM, D9GMIC, D9GMIT, D9LGIC, D9LGIT
LOGICAL FIRST
SAVE EPS, SQEPS, ALNEPS, BOT, FIRST
DATA FIRST /.TRUE./
C***FIRST EXECUTABLE STATEMENT DGAMIC
IF (FIRST) THEN
EPS = 0.5D0*D1MACH(3)
SQEPS = SQRT(D1MACH(4))
ALNEPS = -LOG (D1MACH(3))
BOT = LOG (D1MACH(1))
ENDIF
FIRST = .FALSE.
C
IF (X .LT. 0.D0) CALL XERMSG ('SLATEC', 'DGAMIC', 'X IS NEGATIVE'
+ , 2, 2)
C
IF (X.GT.0.D0) GO TO 20
IF (A .LE. 0.D0) CALL XERMSG ('SLATEC', 'DGAMIC',
+ 'X = 0 AND A LE 0 SO DGAMIC IS UNDEFINED', 3, 2)
C
DGAMIC = EXP (DLNGAM(A+1.D0) - LOG(A))
RETURN
C
20 ALX = LOG (X)
SGA = 1.0D0
IF (A.NE.0.D0) SGA = SIGN (1.0D0, A)
AINTA = AINT (A + 0.5D0*SGA)
AEPS = A - AINTA
C
IZERO = 0
IF (X.GE.1.0D0) GO TO 40
C
IF (A.GT.0.5D0 .OR. ABS(AEPS).GT.0.001D0) GO TO 30
E = 2.0D0
IF (-AINTA.GT.1.D0) E = 2.D0*(-AINTA+2.D0)/(AINTA*AINTA-1.0D0)
E = E - ALX * X**(-0.001D0)
IF (E*ABS(AEPS).GT.EPS) GO TO 30
C
DGAMIC = D9GMIC (A, X, ALX)
RETURN
C
30 CALL DLGAMS (A+1.0D0, ALGAP1, SGNGAM)
GSTAR = D9GMIT (A, X, ALGAP1, SGNGAM, ALX)
IF (GSTAR.EQ.0.D0) IZERO = 1
IF (GSTAR.NE.0.D0) ALNGS = LOG (ABS(GSTAR))
IF (GSTAR.NE.0.D0) SGNGS = SIGN (1.0D0, GSTAR)
GO TO 50
C
40 IF (A.LT.X) DGAMIC = EXP (D9LGIC(A, X, ALX))
IF (A.LT.X) RETURN
C
SGNGAM = 1.0D0
ALGAP1 = DLNGAM (A+1.0D0)
SGNGS = 1.0D0
ALNGS = D9LGIT (A, X, ALGAP1)
C
C EVALUATION OF DGAMIC(A,X) IN TERMS OF TRICOMI-S INCOMPLETE GAMMA FN.
C
50 H = 1.D0
IF (IZERO.EQ.1) GO TO 60
C
T = A*ALX + ALNGS
IF (T.GT.ALNEPS) GO TO 70
IF (T.GT.(-ALNEPS)) H = 1.0D0 - SGNGS*EXP(T)
C
IF (ABS(H).LT.SQEPS) CALL XERCLR
IF (ABS(H) .LT. SQEPS) CALL XERMSG ('SLATEC', 'DGAMIC',
+ 'RESULT LT HALF PRECISION', 1, 1)
C
60 SGNG = SIGN (1.0D0, H) * SGA * SGNGAM
T = LOG(ABS(H)) + ALGAP1 - LOG(ABS(A))
IF (T.LT.BOT) CALL XERCLR
DGAMIC = SGNG * EXP(T)
RETURN
C
70 SGNG = -SGNGS * SGA * SGNGAM
T = T + ALGAP1 - LOG(ABS(A))
IF (T.LT.BOT) CALL XERCLR
DGAMIC = SGNG * EXP(T)
RETURN
C
END