OpenLibm/slatec/dgamit.f

120 lines
4 KiB
FortranFixed
Raw Normal View History

*DECK DGAMIT
DOUBLE PRECISION FUNCTION DGAMIT (A, X)
C***BEGIN PROLOGUE DGAMIT
C***PURPOSE Calculate Tricomi's form of the incomplete Gamma function.
C***LIBRARY SLATEC (FNLIB)
C***CATEGORY C7E
C***TYPE DOUBLE PRECISION (GAMIT-S, DGAMIT-D)
C***KEYWORDS COMPLEMENTARY INCOMPLETE GAMMA FUNCTION, FNLIB,
C SPECIAL FUNCTIONS, TRICOMI
C***AUTHOR Fullerton, W., (LANL)
C***DESCRIPTION
C
C Evaluate Tricomi's incomplete Gamma function defined by
C
C DGAMIT = X**(-A)/GAMMA(A) * integral from 0 to X of EXP(-T) *
C T**(A-1.)
C
C for A .GT. 0.0 and by analytic continuation for A .LE. 0.0.
C GAMMA(X) is the complete gamma function of X.
C
C DGAMIT is evaluated for arbitrary real values of A and for non-
C negative values of X (even though DGAMIT is defined for X .LT.
C 0.0), except that for X = 0 and A .LE. 0.0, DGAMIT is infinite,
C which is a fatal error.
C
C The function and both arguments are DOUBLE PRECISION.
C
C A slight deterioration of 2 or 3 digits accuracy will occur when
C DGAMIT is very large or very small in absolute value, because log-
C arithmic variables are used. Also, if the parameter A is very
C close to a negative integer (but not a negative integer), there is
C a loss of accuracy, which is reported if the result is less than
C half machine precision.
C
C***REFERENCES W. Gautschi, A computational procedure for incomplete
C gamma functions, ACM Transactions on Mathematical
C Software 5, 4 (December 1979), pp. 466-481.
C W. Gautschi, Incomplete gamma functions, Algorithm 542,
C ACM Transactions on Mathematical Software 5, 4
C (December 1979), pp. 482-489.
C***ROUTINES CALLED D1MACH, D9GMIT, D9LGIC, D9LGIT, DGAMR, DLGAMS,
C DLNGAM, XERCLR, XERMSG
C***REVISION HISTORY (YYMMDD)
C 770701 DATE WRITTEN
C 890531 Changed all specific intrinsics to generic. (WRB)
C 890531 REVISION DATE from Version 3.2
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
C 920528 DESCRIPTION and REFERENCES sections revised. (WRB)
C***END PROLOGUE DGAMIT
DOUBLE PRECISION A, X, AEPS, AINTA, ALGAP1, ALNEPS, ALNG, ALX,
1 BOT, H, SGA, SGNGAM, SQEPS, T, D1MACH, DGAMR, D9GMIT, D9LGIT,
2 DLNGAM, D9LGIC
LOGICAL FIRST
SAVE ALNEPS, SQEPS, BOT, FIRST
DATA FIRST /.TRUE./
C***FIRST EXECUTABLE STATEMENT DGAMIT
IF (FIRST) THEN
ALNEPS = -LOG (D1MACH(3))
SQEPS = SQRT(D1MACH(4))
BOT = LOG (D1MACH(1))
ENDIF
FIRST = .FALSE.
C
IF (X .LT. 0.D0) CALL XERMSG ('SLATEC', 'DGAMIT', 'X IS NEGATIVE'
+ , 2, 2)
C
IF (X.NE.0.D0) ALX = LOG (X)
SGA = 1.0D0
IF (A.NE.0.D0) SGA = SIGN (1.0D0, A)
AINTA = AINT (A + 0.5D0*SGA)
AEPS = A - AINTA
C
IF (X.GT.0.D0) GO TO 20
DGAMIT = 0.0D0
IF (AINTA.GT.0.D0 .OR. AEPS.NE.0.D0) DGAMIT = DGAMR(A+1.0D0)
RETURN
C
20 IF (X.GT.1.D0) GO TO 30
IF (A.GE.(-0.5D0) .OR. AEPS.NE.0.D0) CALL DLGAMS (A+1.0D0, ALGAP1,
1 SGNGAM)
DGAMIT = D9GMIT (A, X, ALGAP1, SGNGAM, ALX)
RETURN
C
30 IF (A.LT.X) GO TO 40
T = D9LGIT (A, X, DLNGAM(A+1.0D0))
IF (T.LT.BOT) CALL XERCLR
DGAMIT = EXP (T)
RETURN
C
40 ALNG = D9LGIC (A, X, ALX)
C
C EVALUATE DGAMIT IN TERMS OF LOG (DGAMIC (A, X))
C
H = 1.0D0
IF (AEPS.EQ.0.D0 .AND. AINTA.LE.0.D0) GO TO 50
C
CALL DLGAMS (A+1.0D0, ALGAP1, SGNGAM)
T = LOG (ABS(A)) + ALNG - ALGAP1
IF (T.GT.ALNEPS) GO TO 60
C
IF (T.GT.(-ALNEPS)) H = 1.0D0 - SGA * SGNGAM * EXP(T)
IF (ABS(H).GT.SQEPS) GO TO 50
C
CALL XERCLR
CALL XERMSG ('SLATEC', 'DGAMIT', 'RESULT LT HALF PRECISION', 1,
+ 1)
C
50 T = -A*ALX + LOG(ABS(H))
IF (T.LT.BOT) CALL XERCLR
DGAMIT = SIGN (EXP(T), H)
RETURN
C
60 T = T - A*ALX
IF (T.LT.BOT) CALL XERCLR
DGAMIT = -SGA * SGNGAM * EXP(T)
RETURN
C
END