mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-03 23:43:41 +01:00
202 lines
7.1 KiB
FortranFixed
202 lines
7.1 KiB
FortranFixed
|
*DECK DGAUS8
|
||
|
SUBROUTINE DGAUS8 (FUN, A, B, ERR, ANS, IERR)
|
||
|
C***BEGIN PROLOGUE DGAUS8
|
||
|
C***PURPOSE Integrate a real function of one variable over a finite
|
||
|
C interval using an adaptive 8-point Legendre-Gauss
|
||
|
C algorithm. Intended primarily for high accuracy
|
||
|
C integration or integration of smooth functions.
|
||
|
C***LIBRARY SLATEC
|
||
|
C***CATEGORY H2A1A1
|
||
|
C***TYPE DOUBLE PRECISION (GAUS8-S, DGAUS8-D)
|
||
|
C***KEYWORDS ADAPTIVE QUADRATURE, AUTOMATIC INTEGRATOR,
|
||
|
C GAUSS QUADRATURE, NUMERICAL INTEGRATION
|
||
|
C***AUTHOR Jones, R. E., (SNLA)
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C Abstract *** a DOUBLE PRECISION routine ***
|
||
|
C DGAUS8 integrates real functions of one variable over finite
|
||
|
C intervals using an adaptive 8-point Legendre-Gauss algorithm.
|
||
|
C DGAUS8 is intended primarily for high accuracy integration
|
||
|
C or integration of smooth functions.
|
||
|
C
|
||
|
C The maximum number of significant digits obtainable in ANS
|
||
|
C is the smaller of 18 and the number of digits carried in
|
||
|
C double precision arithmetic.
|
||
|
C
|
||
|
C Description of Arguments
|
||
|
C
|
||
|
C Input--* FUN, A, B, ERR are DOUBLE PRECISION *
|
||
|
C FUN - name of external function to be integrated. This name
|
||
|
C must be in an EXTERNAL statement in the calling program.
|
||
|
C FUN must be a DOUBLE PRECISION function of one DOUBLE
|
||
|
C PRECISION argument. The value of the argument to FUN
|
||
|
C is the variable of integration which ranges from A to B.
|
||
|
C A - lower limit of integration
|
||
|
C B - upper limit of integration (may be less than A)
|
||
|
C ERR - is a requested pseudorelative error tolerance. Normally
|
||
|
C pick a value of ABS(ERR) so that DTOL .LT. ABS(ERR) .LE.
|
||
|
C 1.0D-3 where DTOL is the larger of 1.0D-18 and the
|
||
|
C double precision unit roundoff D1MACH(4). ANS will
|
||
|
C normally have no more error than ABS(ERR) times the
|
||
|
C integral of the absolute value of FUN(X). Usually,
|
||
|
C smaller values of ERR yield more accuracy and require
|
||
|
C more function evaluations.
|
||
|
C
|
||
|
C A negative value for ERR causes an estimate of the
|
||
|
C absolute error in ANS to be returned in ERR. Note that
|
||
|
C ERR must be a variable (not a constant) in this case.
|
||
|
C Note also that the user must reset the value of ERR
|
||
|
C before making any more calls that use the variable ERR.
|
||
|
C
|
||
|
C Output--* ERR,ANS are double precision *
|
||
|
C ERR - will be an estimate of the absolute error in ANS if the
|
||
|
C input value of ERR was negative. (ERR is unchanged if
|
||
|
C the input value of ERR was non-negative.) The estimated
|
||
|
C error is solely for information to the user and should
|
||
|
C not be used as a correction to the computed integral.
|
||
|
C ANS - computed value of integral
|
||
|
C IERR- a status code
|
||
|
C --Normal codes
|
||
|
C 1 ANS most likely meets requested error tolerance,
|
||
|
C or A=B.
|
||
|
C -1 A and B are too nearly equal to allow normal
|
||
|
C integration. ANS is set to zero.
|
||
|
C --Abnormal code
|
||
|
C 2 ANS probably does not meet requested error tolerance.
|
||
|
C
|
||
|
C***REFERENCES (NONE)
|
||
|
C***ROUTINES CALLED D1MACH, I1MACH, XERMSG
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 810223 DATE WRITTEN
|
||
|
C 890531 Changed all specific intrinsics to generic. (WRB)
|
||
|
C 890911 Removed unnecessary intrinsics. (WRB)
|
||
|
C 890911 REVISION DATE from Version 3.2
|
||
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
|
||
|
C 900326 Removed duplicate information from DESCRIPTION section.
|
||
|
C (WRB)
|
||
|
C***END PROLOGUE DGAUS8
|
||
|
INTEGER IERR, K, KML, KMX, L, LMN, LMX, LR, MXL, NBITS,
|
||
|
1 NIB, NLMN, NLMX
|
||
|
INTEGER I1MACH
|
||
|
DOUBLE PRECISION A,AA,AE,ANIB,ANS,AREA,B,C,CE,EE,EF,
|
||
|
1 EPS, ERR, EST, GL, GLR, GR, HH, SQ2, TOL, VL, VR, W1, W2, W3,
|
||
|
2 W4, X1, X2, X3, X4, X, H
|
||
|
DOUBLE PRECISION D1MACH, G8, FUN
|
||
|
DIMENSION AA(60), HH(60), LR(60), VL(60), GR(60)
|
||
|
SAVE X1, X2, X3, X4, W1, W2, W3, W4, SQ2,
|
||
|
1 NLMN, KMX, KML
|
||
|
DATA X1, X2, X3, X4/
|
||
|
1 1.83434642495649805D-01, 5.25532409916328986D-01,
|
||
|
2 7.96666477413626740D-01, 9.60289856497536232D-01/
|
||
|
DATA W1, W2, W3, W4/
|
||
|
1 3.62683783378361983D-01, 3.13706645877887287D-01,
|
||
|
2 2.22381034453374471D-01, 1.01228536290376259D-01/
|
||
|
DATA SQ2/1.41421356D0/
|
||
|
DATA NLMN/1/,KMX/5000/,KML/6/
|
||
|
G8(X,H)=H*((W1*(FUN(X-X1*H) + FUN(X+X1*H))
|
||
|
1 +W2*(FUN(X-X2*H) + FUN(X+X2*H)))
|
||
|
2 +(W3*(FUN(X-X3*H) + FUN(X+X3*H))
|
||
|
3 +W4*(FUN(X-X4*H) + FUN(X+X4*H))))
|
||
|
C***FIRST EXECUTABLE STATEMENT DGAUS8
|
||
|
C
|
||
|
C Initialize
|
||
|
C
|
||
|
K = I1MACH(14)
|
||
|
ANIB = D1MACH(5)*K/0.30102000D0
|
||
|
NBITS = ANIB
|
||
|
NLMX = MIN(60,(NBITS*5)/8)
|
||
|
ANS = 0.0D0
|
||
|
IERR = 1
|
||
|
CE = 0.0D0
|
||
|
IF (A .EQ. B) GO TO 140
|
||
|
LMX = NLMX
|
||
|
LMN = NLMN
|
||
|
IF (B .EQ. 0.0D0) GO TO 10
|
||
|
IF (SIGN(1.0D0,B)*A .LE. 0.0D0) GO TO 10
|
||
|
C = ABS(1.0D0-A/B)
|
||
|
IF (C .GT. 0.1D0) GO TO 10
|
||
|
IF (C .LE. 0.0D0) GO TO 140
|
||
|
ANIB = 0.5D0 - LOG(C)/0.69314718D0
|
||
|
NIB = ANIB
|
||
|
LMX = MIN(NLMX,NBITS-NIB-7)
|
||
|
IF (LMX .LT. 1) GO TO 130
|
||
|
LMN = MIN(LMN,LMX)
|
||
|
10 TOL = MAX(ABS(ERR),2.0D0**(5-NBITS))/2.0D0
|
||
|
IF (ERR .EQ. 0.0D0) TOL = SQRT(D1MACH(4))
|
||
|
EPS = TOL
|
||
|
HH(1) = (B-A)/4.0D0
|
||
|
AA(1) = A
|
||
|
LR(1) = 1
|
||
|
L = 1
|
||
|
EST = G8(AA(L)+2.0D0*HH(L),2.0D0*HH(L))
|
||
|
K = 8
|
||
|
AREA = ABS(EST)
|
||
|
EF = 0.5D0
|
||
|
MXL = 0
|
||
|
C
|
||
|
C Compute refined estimates, estimate the error, etc.
|
||
|
C
|
||
|
20 GL = G8(AA(L)+HH(L),HH(L))
|
||
|
GR(L) = G8(AA(L)+3.0D0*HH(L),HH(L))
|
||
|
K = K + 16
|
||
|
AREA = AREA + (ABS(GL)+ABS(GR(L))-ABS(EST))
|
||
|
C IF (L .LT .LMN) GO TO 11
|
||
|
GLR = GL + GR(L)
|
||
|
EE = ABS(EST-GLR)*EF
|
||
|
AE = MAX(EPS*AREA,TOL*ABS(GLR))
|
||
|
IF (EE-AE) 40, 40, 50
|
||
|
30 MXL = 1
|
||
|
40 CE = CE + (EST-GLR)
|
||
|
IF (LR(L)) 60, 60, 80
|
||
|
C
|
||
|
C Consider the left half of this level
|
||
|
C
|
||
|
50 IF (K .GT. KMX) LMX = KML
|
||
|
IF (L .GE. LMX) GO TO 30
|
||
|
L = L + 1
|
||
|
EPS = EPS*0.5D0
|
||
|
EF = EF/SQ2
|
||
|
HH(L) = HH(L-1)*0.5D0
|
||
|
LR(L) = -1
|
||
|
AA(L) = AA(L-1)
|
||
|
EST = GL
|
||
|
GO TO 20
|
||
|
C
|
||
|
C Proceed to right half at this level
|
||
|
C
|
||
|
60 VL(L) = GLR
|
||
|
70 EST = GR(L-1)
|
||
|
LR(L) = 1
|
||
|
AA(L) = AA(L) + 4.0D0*HH(L)
|
||
|
GO TO 20
|
||
|
C
|
||
|
C Return one level
|
||
|
C
|
||
|
80 VR = GLR
|
||
|
90 IF (L .LE. 1) GO TO 120
|
||
|
L = L - 1
|
||
|
EPS = EPS*2.0D0
|
||
|
EF = EF*SQ2
|
||
|
IF (LR(L)) 100, 100, 110
|
||
|
100 VL(L) = VL(L+1) + VR
|
||
|
GO TO 70
|
||
|
110 VR = VL(L+1) + VR
|
||
|
GO TO 90
|
||
|
C
|
||
|
C Exit
|
||
|
C
|
||
|
120 ANS = VR
|
||
|
IF ((MXL.EQ.0) .OR. (ABS(CE).LE.2.0D0*TOL*AREA)) GO TO 140
|
||
|
IERR = 2
|
||
|
CALL XERMSG ('SLATEC', 'DGAUS8',
|
||
|
+ 'ANS is probably insufficiently accurate.', 3, 1)
|
||
|
GO TO 140
|
||
|
130 IERR = -1
|
||
|
CALL XERMSG ('SLATEC', 'DGAUS8',
|
||
|
+ 'A and B are too nearly equal to allow normal integration. $$'
|
||
|
+ // 'ANS is set to zero and IERR to -1.', 1, -1)
|
||
|
140 IF (ERR .LT. 0.0D0) ERR = CE
|
||
|
RETURN
|
||
|
END
|