OpenLibm/slatec/dlssud.f

319 lines
12 KiB
FortranFixed
Raw Normal View History

*DECK DLSSUD
SUBROUTINE DLSSUD (A, X, B, N, M, NRDA, U, NRDU, IFLAG, MLSO,
+ IRANK, ISCALE, Q, DIAG, KPIVOT, S, DIV, TD, ISFLG, SCALES)
C***BEGIN PROLOGUE DLSSUD
C***SUBSIDIARY
C***PURPOSE Subsidiary to DBVSUP and DSUDS
C***LIBRARY SLATEC
C***TYPE DOUBLE PRECISION (LSSUDS-S, DLSSUD-D)
C***AUTHOR Watts, H. A., (SNLA)
C***DESCRIPTION
C
C DLSSUD solves the underdetermined system of equations A Z = B,
C where A is N by M and N .LE. M. In particular, if rank A equals
C IRA, a vector X and a matrix U are determined such that X is the
C UNIQUE solution of smallest length, satisfying A X = B, and the
C columns of U form an orthonormal basis for the null space of A,
C satisfying A U = 0 . Then all solutions Z are given by
C Z = X + C(1)*U(1) + ..... + C(M-IRA)*U(M-IRA)
C where U(J) represents the J-th column of U and the C(J) are
C arbitrary constants.
C If the system of equations are not compatible, only the least
C squares solution of minimal length is computed.
C
C *********************************************************************
C INPUT
C *********************************************************************
C
C A -- Contains the matrix of N equations in M unknowns, A remains
C unchanged, must be dimensioned NRDA by M.
C X -- Solution array of length at least M.
C B -- Given constant vector of length N, B remains unchanged.
C N -- Number of equations, N greater or equal to 1.
C M -- Number of unknowns, M greater or equal to N.
C NRDA -- Row dimension of A, NRDA greater or equal to N.
C U -- Matrix used for solution, must be dimensioned NRDU by
C (M - rank of A).
C (storage for U may be ignored when only the minimal length
C solution X is desired)
C NRDU -- Row dimension of U, NRDU greater or equal to M.
C (if only the minimal length solution is wanted,
C NRDU=0 is acceptable)
C IFLAG -- Status indicator
C =0 for the first call (and for each new problem defined by
C a new matrix A) when the matrix data is treated as exact
C =-K for the first call (and for each new problem defined by
C a new matrix A) when the matrix data is assumed to be
C accurate to about K digits.
C =1 for subsequent calls whenever the matrix A has already
C been decomposed (problems with new vectors B but
C same matrix A can be handled efficiently).
C MLSO -- =0 if only the minimal length solution is wanted.
C =1 if the complete solution is wanted, includes the
C linear space defined by the matrix U.
C IRANK -- Variable used for the rank of A, set by the code.
C ISCALE -- Scaling indicator
C =-1 if the matrix A is to be pre-scaled by
C columns when appropriate.
C If the scaling indicator is not equal to -1
C no scaling will be attempted.
C For most problems scaling will probably not be necessary.
C Q -- Matrix used for the transformation, must be dimensioned
C NRDA by M.
C DIAG,KPIVOT,S, -- Arrays of length at least N used for internal
C DIV,TD,SCALES storage (except for SCALES which is M).
C ISFLG -- Storage for an internal variable.
C
C *********************************************************************
C OUTPUT
C *********************************************************************
C
C IFLAG -- Status indicator
C =1 if solution was obtained.
C =2 if improper input is detected.
C =3 if rank of matrix is less than N.
C To continue, simply reset IFLAG=1 and call DLSSUD again.
C =4 if the system of equations appears to be inconsistent.
C However, the least squares solution of minimal length
C was obtained.
C X -- Minimal length least squares solution of A Z = B
C IRANK -- Numerically determined rank of A, must not be altered
C on succeeding calls with input values of IFLAG=1.
C U -- Matrix whose M-IRANK columns are mutually orthogonal unit
C vectors which span the null space of A. This is to be ignored
C when MLSO was set to zero or IFLAG=4 on output.
C Q -- Contains the strictly upper triangular part of the reduced
C matrix and transformation information.
C DIAG -- Contains the diagonal elements of the triangular reduced
C matrix.
C KPIVOT -- Contains the pivotal information. The row interchanges
C performed on the original matrix are recorded here.
C S -- Contains the solution of the lower triangular system.
C DIV,TD -- Contains transformation information for rank
C deficient problems.
C SCALES -- Contains the column scaling parameters.
C
C *********************************************************************
C
C***SEE ALSO DBVSUP, DSUDS
C***REFERENCES H. A. Watts, Solving linear least squares problems
C using SODS/SUDS/CODS, Sandia Report SAND77-0683,
C Sandia Laboratories, 1977.
C***ROUTINES CALLED D1MACH, DDOT, DOHTRL, DORTHR, J4SAVE, XERMAX,
C XERMSG, XGETF, XSETF
C***REVISION HISTORY (YYMMDD)
C 750601 DATE WRITTEN
C 890531 Changed all specific intrinsics to generic. (WRB)
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
C 900328 Added TYPE section. (WRB)
C 910408 Updated the AUTHOR and REFERENCES sections. (WRB)
C 920501 Reformatted the REFERENCES section. (WRB)
C***END PROLOGUE DLSSUD
INTEGER J4SAVE
DOUBLE PRECISION DDOT, D1MACH
INTEGER I, IFLAG, IRANK, IRP, ISCALE, ISFLG, J, JR, K, KP,
1 KPIVOT(*), L, M, MAXMES, MJ, MLSO, N, NFAT, NFATAL, NMIR,
2 NRDA, NRDU, NU
DOUBLE PRECISION A(NRDA,*), B(*), DIAG(*), DIV(*), GAM, GAMMA,
1 Q(NRDA,*), RES, S(*), SCALES(*), SS, TD(*), U(NRDU,*), URO,
2 X(*)
C
C ******************************************************************
C
C MACHINE PRECISION (COMPUTER UNIT ROUNDOFF VALUE) IS DEFINED
C BY THE FUNCTION D1MACH.
C
C ******************************************************************
C
C BEGIN BLOCK PERMITTING ...EXITS TO 310
C BEGIN BLOCK PERMITTING ...EXITS TO 80
C***FIRST EXECUTABLE STATEMENT DLSSUD
URO = D1MACH(4)
C
IF (N .LT. 1 .OR. M .LT. N .OR. NRDA .LT. N) GO TO 70
IF (NRDU .NE. 0 .AND. NRDU .LT. M) GO TO 70
IF (IFLAG .GT. 0) GO TO 60
C
CALL XGETF(NFATAL)
MAXMES = J4SAVE(4,0,.FALSE.)
ISFLG = -15
IF (IFLAG .EQ. 0) GO TO 10
ISFLG = IFLAG
NFAT = -1
IF (NFATAL .EQ. 0) NFAT = 0
CALL XSETF(NFAT)
CALL XERMAX(1)
10 CONTINUE
C
C COPY MATRIX A INTO MATRIX Q
C
DO 30 K = 1, M
DO 20 J = 1, N
Q(J,K) = A(J,K)
20 CONTINUE
30 CONTINUE
C
C USE ORTHOGONAL TRANSFORMATIONS TO REDUCE Q TO LOWER
C TRIANGULAR FORM
C
CALL DORTHR(Q,N,M,NRDA,IFLAG,IRANK,ISCALE,DIAG,KPIVOT,
1 SCALES,DIV,TD)
C
CALL XSETF(NFATAL)
CALL XERMAX(MAXMES)
IF (IRANK .EQ. N) GO TO 40
C
C FOR RANK DEFICIENT PROBLEMS USE ADDITIONAL
C ORTHOGONAL TRANSFORMATIONS TO FURTHER REDUCE Q
C
IF (IRANK .NE. 0)
1 CALL DOHTRL(Q,N,NRDA,DIAG,IRANK,DIV,TD)
C ...............EXIT
GO TO 310
40 CONTINUE
C
C STORE DIVISORS FOR THE TRIANGULAR SOLUTION
C
DO 50 K = 1, N
DIV(K) = DIAG(K)
50 CONTINUE
C .........EXIT
GO TO 80
60 CONTINUE
C ......EXIT
IF (IFLAG .EQ. 1) GO TO 80
70 CONTINUE
C
C INVALID INPUT FOR DLSSUD
IFLAG = 2
CALL XERMSG ('SLATEC', 'DLSSUD',
+ 'INVALID IMPUT PARAMETERS.', 2, 1)
C ......EXIT
GO TO 310
80 CONTINUE
C
C
IF (IRANK .GT. 0) GO TO 130
C
C SPECIAL CASE FOR THE NULL MATRIX
DO 110 K = 1, M
X(K) = 0.0D0
IF (MLSO .EQ. 0) GO TO 100
U(K,K) = 1.0D0
DO 90 J = 1, M
IF (J .NE. K) U(J,K) = 0.0D0
90 CONTINUE
100 CONTINUE
110 CONTINUE
DO 120 K = 1, N
IF (B(K) .GT. 0.0D0) IFLAG = 4
120 CONTINUE
GO TO 300
130 CONTINUE
C BEGIN BLOCK PERMITTING ...EXITS TO 180
C
C COPY CONSTANT VECTOR INTO S AFTER FIRST INTERCHANGING
C THE ELEMENTS ACCORDING TO THE PIVOTAL SEQUENCE
C
DO 140 K = 1, N
KP = KPIVOT(K)
X(K) = B(KP)
140 CONTINUE
DO 150 K = 1, N
S(K) = X(K)
150 CONTINUE
C
IRP = IRANK + 1
NU = 1
IF (MLSO .EQ. 0) NU = 0
C ...EXIT
IF (IRANK .EQ. N) GO TO 180
C
C FOR RANK DEFICIENT PROBLEMS WE MUST APPLY THE
C ORTHOGONAL TRANSFORMATION TO S
C WE ALSO CHECK TO SEE IF THE SYSTEM APPEARS TO BE
C INCONSISTENT
C
NMIR = N - IRANK
SS = DDOT(N,S(1),1,S(1),1)
DO 170 L = 1, IRANK
K = IRP - L
GAM = ((TD(K)*S(K)) + DDOT(NMIR,Q(IRP,K),1,S(IRP),1))
1 /(TD(K)*DIV(K))
S(K) = S(K) + GAM*TD(K)
DO 160 J = IRP, N
S(J) = S(J) + GAM*Q(J,K)
160 CONTINUE
170 CONTINUE
RES = DDOT(NMIR,S(IRP),1,S(IRP),1)
C ...EXIT
IF (RES
1 .LE. SS*(10.0D0*MAX(10.0D0**ISFLG,10.0D0*URO))**2)
2 GO TO 180
C
C INCONSISTENT SYSTEM
IFLAG = 4
NU = 0
180 CONTINUE
C
C APPLY FORWARD SUBSTITUTION TO SOLVE LOWER TRIANGULAR SYSTEM
C
S(1) = S(1)/DIV(1)
IF (IRANK .LT. 2) GO TO 200
DO 190 K = 2, IRANK
S(K) = (S(K) - DDOT(K-1,Q(K,1),NRDA,S(1),1))/DIV(K)
190 CONTINUE
200 CONTINUE
C
C INITIALIZE X VECTOR AND THEN APPLY ORTHOGONAL TRANSFORMATION
C
DO 210 K = 1, M
X(K) = 0.0D0
IF (K .LE. IRANK) X(K) = S(K)
210 CONTINUE
C
DO 230 JR = 1, IRANK
J = IRP - JR
MJ = M - J + 1
GAMMA = DDOT(MJ,Q(J,J),NRDA,X(J),1)/(DIAG(J)*Q(J,J))
DO 220 K = J, M
X(K) = X(K) + GAMMA*Q(J,K)
220 CONTINUE
230 CONTINUE
C
C RESCALE ANSWERS AS DICTATED
C
DO 240 K = 1, M
X(K) = X(K)*SCALES(K)
240 CONTINUE
C
IF (NU .EQ. 0 .OR. M .EQ. IRANK) GO TO 290
C
C INITIALIZE U MATRIX AND THEN APPLY ORTHOGONAL
C TRANSFORMATION
C
L = M - IRANK
DO 280 K = 1, L
DO 250 I = 1, M
U(I,K) = 0.0D0
IF (I .EQ. IRANK + K) U(I,K) = 1.0D0
250 CONTINUE
C
DO 270 JR = 1, IRANK
J = IRP - JR
MJ = M - J + 1
GAMMA = DDOT(MJ,Q(J,J),NRDA,U(J,K),1)
1 /(DIAG(J)*Q(J,J))
DO 260 I = J, M
U(I,K) = U(I,K) + GAMMA*Q(J,I)
260 CONTINUE
270 CONTINUE
280 CONTINUE
290 CONTINUE
300 CONTINUE
310 CONTINUE
C
RETURN
END