mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-19 19:22:28 +01:00
180 lines
5.4 KiB
FortranFixed
180 lines
5.4 KiB
FortranFixed
|
*DECK DNBFA
|
||
|
SUBROUTINE DNBFA (ABE, LDA, N, ML, MU, IPVT, INFO)
|
||
|
C***BEGIN PROLOGUE DNBFA
|
||
|
C***PURPOSE Factor a band matrix by elimination.
|
||
|
C***LIBRARY SLATEC
|
||
|
C***CATEGORY D2A2
|
||
|
C***TYPE DOUBLE PRECISION (SNBFA-S, DNBFA-D, CNBFA-C)
|
||
|
C***KEYWORDS BANDED, LINEAR EQUATIONS, MATRIX FACTORIZATION,
|
||
|
C NONSYMMETRIC
|
||
|
C***AUTHOR Voorhees, E. A., (LANL)
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C DNBFA factors a double precision band matrix by elimination.
|
||
|
C
|
||
|
C DNBFA is usually called by DNBCO, but it can be called
|
||
|
C directly with a saving in time if RCOND is not needed.
|
||
|
C
|
||
|
C On Entry
|
||
|
C
|
||
|
C ABE DOUBLE PRECISION(LDA, NC)
|
||
|
C contains the matrix in band storage. The rows
|
||
|
C of the original matrix are stored in the rows
|
||
|
C of ABE and the diagonals of the original matrix
|
||
|
C are stored in columns 1 through ML+MU+1 of ABE.
|
||
|
C NC must be .GE. 2*ML+MU+1 .
|
||
|
C See the comments below for details.
|
||
|
C
|
||
|
C LDA INTEGER
|
||
|
C the leading dimension of the array ABE.
|
||
|
C LDA must be .GE. N .
|
||
|
C
|
||
|
C N INTEGER
|
||
|
C the order of the original matrix.
|
||
|
C
|
||
|
C ML INTEGER
|
||
|
C number of diagonals below the main diagonal.
|
||
|
C 0 .LE. ML .LT. N .
|
||
|
C
|
||
|
C MU INTEGER
|
||
|
C number of diagonals above the main diagonal.
|
||
|
C 0 .LE. MU .LT. N .
|
||
|
C More efficient if ML .LE. MU .
|
||
|
C
|
||
|
C On Return
|
||
|
C
|
||
|
C ABE an upper triangular matrix in band storage
|
||
|
C and the multipliers which were used to obtain it.
|
||
|
C The factorization can be written A = L*U where
|
||
|
C L is a product of permutation and unit lower
|
||
|
C triangular matrices and U is upper triangular.
|
||
|
C
|
||
|
C IPVT INTEGER(N)
|
||
|
C an integer vector of pivot indices.
|
||
|
C
|
||
|
C INFO INTEGER
|
||
|
C =0 normal value
|
||
|
C =K if U(K,K) .EQ. 0.0 . This is not an error
|
||
|
C condition for this subroutine, but it does
|
||
|
C indicate that DNBSL will divide by zero if
|
||
|
C called. Use RCOND in DNBCO for a reliable
|
||
|
C indication of singularity.
|
||
|
C
|
||
|
C Band Storage
|
||
|
C
|
||
|
C If A is a band matrix, the following program segment
|
||
|
C will set up the input.
|
||
|
C
|
||
|
C ML = (band width below the diagonal)
|
||
|
C MU = (band width above the diagonal)
|
||
|
C DO 20 I = 1, N
|
||
|
C J1 = MAX(1, I-ML)
|
||
|
C J2 = MIN(N, I+MU)
|
||
|
C DO 10 J = J1, J2
|
||
|
C K = J - I + ML + 1
|
||
|
C ABE(I,K) = A(I,J)
|
||
|
C 10 CONTINUE
|
||
|
C 20 CONTINUE
|
||
|
C
|
||
|
C This uses columns 1 through ML+MU+1 of ABE .
|
||
|
C Furthermore, ML additional columns are needed in
|
||
|
C ABE starting with column ML+MU+2 for elements
|
||
|
C generated during the triangularization. The total
|
||
|
C number of columns needed in ABE is 2*ML+MU+1 .
|
||
|
C
|
||
|
C Example: If the original matrix is
|
||
|
C
|
||
|
C 11 12 13 0 0 0
|
||
|
C 21 22 23 24 0 0
|
||
|
C 0 32 33 34 35 0
|
||
|
C 0 0 43 44 45 46
|
||
|
C 0 0 0 54 55 56
|
||
|
C 0 0 0 0 65 66
|
||
|
C
|
||
|
C then N = 6, ML = 1, MU = 2, LDA .GE. 5 and ABE should contain
|
||
|
C
|
||
|
C * 11 12 13 + , * = not used
|
||
|
C 21 22 23 24 + , + = used for pivoting
|
||
|
C 32 33 34 35 +
|
||
|
C 43 44 45 46 +
|
||
|
C 54 55 56 * +
|
||
|
C 65 66 * * +
|
||
|
C
|
||
|
C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
|
||
|
C Stewart, LINPACK Users' Guide, SIAM, 1979.
|
||
|
C***ROUTINES CALLED DAXPY, DSCAL, DSWAP, IDAMAX
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 800728 DATE WRITTEN
|
||
|
C 890531 Changed all specific intrinsics to generic. (WRB)
|
||
|
C 890831 Modified array declarations. (WRB)
|
||
|
C 890831 REVISION DATE from Version 3.2
|
||
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C 920501 Reformatted the REFERENCES section. (WRB)
|
||
|
C***END PROLOGUE DNBFA
|
||
|
INTEGER LDA,N,ML,MU,IPVT(*),INFO
|
||
|
DOUBLE PRECISION ABE(LDA,*)
|
||
|
C
|
||
|
INTEGER ML1,MB,M,N1,LDB,I,J,K,L,LM,LM1,LM2,MP,IDAMAX
|
||
|
DOUBLE PRECISION T
|
||
|
C***FIRST EXECUTABLE STATEMENT DNBFA
|
||
|
ML1=ML+1
|
||
|
MB=ML+MU
|
||
|
M=ML+MU+1
|
||
|
N1=N-1
|
||
|
LDB=LDA-1
|
||
|
INFO=0
|
||
|
C
|
||
|
C SET FILL-IN COLUMNS TO ZERO
|
||
|
C
|
||
|
IF(N.LE.1)GO TO 50
|
||
|
IF(ML.LE.0)GO TO 7
|
||
|
DO 6 J=1,ML
|
||
|
DO 5 I=1,N
|
||
|
ABE(I,M+J)=0.0D0
|
||
|
5 CONTINUE
|
||
|
6 CONTINUE
|
||
|
7 CONTINUE
|
||
|
C
|
||
|
C GAUSSIAN ELIMINATION WITH PARTIAL ELIMINATION
|
||
|
C
|
||
|
DO 40 K=1,N1
|
||
|
LM=MIN(N-K,ML)
|
||
|
LM1=LM+1
|
||
|
LM2=ML1-LM
|
||
|
C
|
||
|
C SEARCH FOR PIVOT INDEX
|
||
|
C
|
||
|
L=-IDAMAX(LM1,ABE(LM+K,LM2),LDB)+LM1+K
|
||
|
IPVT(K)=L
|
||
|
MP=MIN(MB,N-K)
|
||
|
C
|
||
|
C SWAP ROWS IF NECESSARY
|
||
|
C
|
||
|
IF(L.NE.K)CALL DSWAP(MP+1,ABE(K,ML1),LDA,ABE(L,ML1+K-L),LDA)
|
||
|
C
|
||
|
C SKIP COLUMN REDUCTION IF PIVOT IS ZERO
|
||
|
C
|
||
|
IF(ABE(K,ML1).EQ.0.0D0) GO TO 20
|
||
|
C
|
||
|
C COMPUTE MULTIPLIERS
|
||
|
C
|
||
|
T=-1.0/ABE(K,ML1)
|
||
|
CALL DSCAL(LM,T,ABE(LM+K,LM2),LDB)
|
||
|
C
|
||
|
C ROW ELIMINATION WITH COLUMN INDEXING
|
||
|
C
|
||
|
DO 10 J=1,MP
|
||
|
CALL DAXPY (LM,ABE(K,ML1+J),ABE(LM+K,LM2),LDB,ABE(LM+K,LM2+J),
|
||
|
1 LDB)
|
||
|
10 CONTINUE
|
||
|
GO TO 30
|
||
|
20 CONTINUE
|
||
|
INFO=K
|
||
|
30 CONTINUE
|
||
|
40 CONTINUE
|
||
|
50 CONTINUE
|
||
|
IPVT(N)=N
|
||
|
IF(ABE(N,ML1).EQ.0.0D0) INFO=N
|
||
|
RETURN
|
||
|
END
|