mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-04 07:53:38 +01:00
152 lines
5 KiB
FortranFixed
152 lines
5 KiB
FortranFixed
|
*DECK DP1VLU
|
||
|
SUBROUTINE DP1VLU (L, NDER, X, YFIT, YP, A)
|
||
|
C***BEGIN PROLOGUE DP1VLU
|
||
|
C***PURPOSE Use the coefficients generated by DPOLFT to evaluate the
|
||
|
C polynomial fit of degree L, along with the first NDER of
|
||
|
C its derivatives, at a specified point.
|
||
|
C***LIBRARY SLATEC
|
||
|
C***CATEGORY K6
|
||
|
C***TYPE DOUBLE PRECISION (PVALUE-S, DP1VLU-D)
|
||
|
C***KEYWORDS CURVE FITTING, LEAST SQUARES, POLYNOMIAL APPROXIMATION
|
||
|
C***AUTHOR Shampine, L. F., (SNLA)
|
||
|
C Davenport, S. M., (SNLA)
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C Abstract
|
||
|
C
|
||
|
C The subroutine DP1VLU uses the coefficients generated by DPOLFT
|
||
|
C to evaluate the polynomial fit of degree L , along with the first
|
||
|
C NDER of its derivatives, at a specified point. Computationally
|
||
|
C stable recurrence relations are used to perform this task.
|
||
|
C
|
||
|
C The parameters for DP1VLU are
|
||
|
C
|
||
|
C Input -- ALL TYPE REAL variables are DOUBLE PRECISION
|
||
|
C L - the degree of polynomial to be evaluated. L may be
|
||
|
C any non-negative integer which is less than or equal
|
||
|
C to NDEG , the highest degree polynomial provided
|
||
|
C by DPOLFT .
|
||
|
C NDER - the number of derivatives to be evaluated. NDER
|
||
|
C may be 0 or any positive value. If NDER is less
|
||
|
C than 0, it will be treated as 0.
|
||
|
C X - the argument at which the polynomial and its
|
||
|
C derivatives are to be evaluated.
|
||
|
C A - work and output array containing values from last
|
||
|
C call to DPOLFT .
|
||
|
C
|
||
|
C Output -- ALL TYPE REAL variables are DOUBLE PRECISION
|
||
|
C YFIT - value of the fitting polynomial of degree L at X
|
||
|
C YP - array containing the first through NDER derivatives
|
||
|
C of the polynomial of degree L . YP must be
|
||
|
C dimensioned at least NDER in the calling program.
|
||
|
C
|
||
|
C***REFERENCES L. F. Shampine, S. M. Davenport and R. E. Huddleston,
|
||
|
C Curve fitting by polynomials in one variable, Report
|
||
|
C SLA-74-0270, Sandia Laboratories, June 1974.
|
||
|
C***ROUTINES CALLED XERMSG
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 740601 DATE WRITTEN
|
||
|
C 890531 Changed all specific intrinsics to generic. (WRB)
|
||
|
C 890911 Removed unnecessary intrinsics. (WRB)
|
||
|
C 891006 Cosmetic changes to prologue. (WRB)
|
||
|
C 891006 REVISION DATE from Version 3.2
|
||
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
|
||
|
C 900510 Convert XERRWV calls to XERMSG calls. (RWC)
|
||
|
C 920501 Reformatted the REFERENCES section. (WRB)
|
||
|
C***END PROLOGUE DP1VLU
|
||
|
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
|
||
|
INTEGER I,IC,ILO,IN,INP1,IUP,K1,K1I,K2,K3,K3P1,K3PN,K4,K4P1,K4PN,
|
||
|
* KC,L,LM1,LP1,MAXORD,N,NDER,NDO,NDP1,NORD
|
||
|
DOUBLE PRECISION A(*),CC,DIF,VAL,X,YFIT,YP(*)
|
||
|
CHARACTER*8 XERN1, XERN2
|
||
|
C***FIRST EXECUTABLE STATEMENT DP1VLU
|
||
|
IF (L .LT. 0) GO TO 12
|
||
|
NDO = MAX(NDER,0)
|
||
|
NDO = MIN(NDO,L)
|
||
|
MAXORD = A(1) + 0.5D0
|
||
|
K1 = MAXORD + 1
|
||
|
K2 = K1 + MAXORD
|
||
|
K3 = K2 + MAXORD + 2
|
||
|
NORD = A(K3) + 0.5D0
|
||
|
IF (L .GT. NORD) GO TO 11
|
||
|
K4 = K3 + L + 1
|
||
|
IF (NDER .LT. 1) GO TO 2
|
||
|
DO 1 I = 1,NDER
|
||
|
1 YP(I) = 0.0D0
|
||
|
2 IF (L .GE. 2) GO TO 4
|
||
|
IF (L .EQ. 1) GO TO 3
|
||
|
C
|
||
|
C L IS 0
|
||
|
C
|
||
|
VAL = A(K2+1)
|
||
|
GO TO 10
|
||
|
C
|
||
|
C L IS 1
|
||
|
C
|
||
|
3 CC = A(K2+2)
|
||
|
VAL = A(K2+1) + (X-A(2))*CC
|
||
|
IF (NDER .GE. 1) YP(1) = CC
|
||
|
GO TO 10
|
||
|
C
|
||
|
C L IS GREATER THAN 1
|
||
|
C
|
||
|
4 NDP1 = NDO + 1
|
||
|
K3P1 = K3 + 1
|
||
|
K4P1 = K4 + 1
|
||
|
LP1 = L + 1
|
||
|
LM1 = L - 1
|
||
|
ILO = K3 + 3
|
||
|
IUP = K4 + NDP1
|
||
|
DO 5 I = ILO,IUP
|
||
|
5 A(I) = 0.0D0
|
||
|
DIF = X - A(LP1)
|
||
|
KC = K2 + LP1
|
||
|
A(K4P1) = A(KC)
|
||
|
A(K3P1) = A(KC-1) + DIF*A(K4P1)
|
||
|
A(K3+2) = A(K4P1)
|
||
|
C
|
||
|
C EVALUATE RECURRENCE RELATIONS FOR FUNCTION VALUE AND DERIVATIVES
|
||
|
C
|
||
|
DO 9 I = 1,LM1
|
||
|
IN = L - I
|
||
|
INP1 = IN + 1
|
||
|
K1I = K1 + INP1
|
||
|
IC = K2 + IN
|
||
|
DIF = X - A(INP1)
|
||
|
VAL = A(IC) + DIF*A(K3P1) - A(K1I)*A(K4P1)
|
||
|
IF (NDO .LE. 0) GO TO 8
|
||
|
DO 6 N = 1,NDO
|
||
|
K3PN = K3P1 + N
|
||
|
K4PN = K4P1 + N
|
||
|
6 YP(N) = DIF*A(K3PN) + N*A(K3PN-1) - A(K1I)*A(K4PN)
|
||
|
C
|
||
|
C SAVE VALUES NEEDED FOR NEXT EVALUATION OF RECURRENCE RELATIONS
|
||
|
C
|
||
|
DO 7 N = 1,NDO
|
||
|
K3PN = K3P1 + N
|
||
|
K4PN = K4P1 + N
|
||
|
A(K4PN) = A(K3PN)
|
||
|
7 A(K3PN) = YP(N)
|
||
|
8 A(K4P1) = A(K3P1)
|
||
|
9 A(K3P1) = VAL
|
||
|
C
|
||
|
C NORMAL RETURN OR ABORT DUE TO ERROR
|
||
|
C
|
||
|
10 YFIT = VAL
|
||
|
RETURN
|
||
|
C
|
||
|
11 WRITE (XERN1, '(I8)') L
|
||
|
WRITE (XERN2, '(I8)') NORD
|
||
|
CALL XERMSG ('SLATEC', 'DP1VLU',
|
||
|
* 'THE ORDER OF POLYNOMIAL EVALUATION, L = ' // XERN1 //
|
||
|
* ' REQUESTED EXCEEDS THE HIGHEST ORDER FIT, NORD = ' // XERN2 //
|
||
|
* ', COMPUTED BY DPOLFT -- EXECUTION TERMINATED.', 8, 2)
|
||
|
RETURN
|
||
|
C
|
||
|
12 CALL XERMSG ('SLATEC', 'DP1VLU',
|
||
|
+ 'INVALID INPUT PARAMETER. ORDER OF POLYNOMIAL EVALUATION ' //
|
||
|
+ 'REQUESTED IS NEGATIVE.', 2, 2)
|
||
|
RETURN
|
||
|
END
|