mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-03 23:43:41 +01:00
186 lines
5.6 KiB
FortranFixed
186 lines
5.6 KiB
FortranFixed
|
*DECK DPCHCI
|
||
|
SUBROUTINE DPCHCI (N, H, SLOPE, D, INCFD)
|
||
|
C***BEGIN PROLOGUE DPCHCI
|
||
|
C***SUBSIDIARY
|
||
|
C***PURPOSE Set interior derivatives for DPCHIC
|
||
|
C***LIBRARY SLATEC (PCHIP)
|
||
|
C***TYPE DOUBLE PRECISION (PCHCI-S, DPCHCI-D)
|
||
|
C***AUTHOR Fritsch, F. N., (LLNL)
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C DPCHCI: DPCHIC Initial Derivative Setter.
|
||
|
C
|
||
|
C Called by DPCHIC to set derivatives needed to determine a monotone
|
||
|
C piecewise cubic Hermite interpolant to the data.
|
||
|
C
|
||
|
C Default boundary conditions are provided which are compatible
|
||
|
C with monotonicity. If the data are only piecewise monotonic, the
|
||
|
C interpolant will have an extremum at each point where monotonicity
|
||
|
C switches direction.
|
||
|
C
|
||
|
C To facilitate two-dimensional applications, includes an increment
|
||
|
C between successive values of the D-array.
|
||
|
C
|
||
|
C The resulting piecewise cubic Hermite function should be identical
|
||
|
C (within roundoff error) to that produced by DPCHIM.
|
||
|
C
|
||
|
C ----------------------------------------------------------------------
|
||
|
C
|
||
|
C Calling sequence:
|
||
|
C
|
||
|
C PARAMETER (INCFD = ...)
|
||
|
C INTEGER N
|
||
|
C DOUBLE PRECISION H(N), SLOPE(N), D(INCFD,N)
|
||
|
C
|
||
|
C CALL DPCHCI (N, H, SLOPE, D, INCFD)
|
||
|
C
|
||
|
C Parameters:
|
||
|
C
|
||
|
C N -- (input) number of data points.
|
||
|
C If N=2, simply does linear interpolation.
|
||
|
C
|
||
|
C H -- (input) real*8 array of interval lengths.
|
||
|
C SLOPE -- (input) real*8 array of data slopes.
|
||
|
C If the data are (X(I),Y(I)), I=1(1)N, then these inputs are:
|
||
|
C H(I) = X(I+1)-X(I),
|
||
|
C SLOPE(I) = (Y(I+1)-Y(I))/H(I), I=1(1)N-1.
|
||
|
C
|
||
|
C D -- (output) real*8 array of derivative values at data points.
|
||
|
C If the data are monotonic, these values will determine a
|
||
|
C a monotone cubic Hermite function.
|
||
|
C The value corresponding to X(I) is stored in
|
||
|
C D(1+(I-1)*INCFD), I=1(1)N.
|
||
|
C No other entries in D are changed.
|
||
|
C
|
||
|
C INCFD -- (input) increment between successive values in D.
|
||
|
C This argument is provided primarily for 2-D applications.
|
||
|
C
|
||
|
C -------
|
||
|
C WARNING: This routine does no validity-checking of arguments.
|
||
|
C -------
|
||
|
C
|
||
|
C Fortran intrinsics used: ABS, MAX, MIN.
|
||
|
C
|
||
|
C***SEE ALSO DPCHIC
|
||
|
C***ROUTINES CALLED DPCHST
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 820218 DATE WRITTEN
|
||
|
C 820601 Modified end conditions to be continuous functions of
|
||
|
C data when monotonicity switches in next interval.
|
||
|
C 820602 1. Modified formulas so end conditions are less prone
|
||
|
C to over/underflow problems.
|
||
|
C 2. Minor modification to HSUM calculation.
|
||
|
C 820805 Converted to SLATEC library version.
|
||
|
C 870813 Minor cosmetic changes.
|
||
|
C 890411 Added SAVE statements (Vers. 3.2).
|
||
|
C 890531 Changed all specific intrinsics to generic. (WRB)
|
||
|
C 890831 Modified array declarations. (WRB)
|
||
|
C 890831 REVISION DATE from Version 3.2
|
||
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C 900328 Added TYPE section. (WRB)
|
||
|
C 910408 Updated AUTHOR section in prologue. (WRB)
|
||
|
C 930503 Improved purpose. (FNF)
|
||
|
C***END PROLOGUE DPCHCI
|
||
|
C
|
||
|
C Programming notes:
|
||
|
C 1. The function DPCHST(ARG1,ARG2) is assumed to return zero if
|
||
|
C either argument is zero, +1 if they are of the same sign, and
|
||
|
C -1 if they are of opposite sign.
|
||
|
C**End
|
||
|
C
|
||
|
C DECLARE ARGUMENTS.
|
||
|
C
|
||
|
INTEGER N, INCFD
|
||
|
DOUBLE PRECISION H(*), SLOPE(*), D(INCFD,*)
|
||
|
C
|
||
|
C DECLARE LOCAL VARIABLES.
|
||
|
C
|
||
|
INTEGER I, NLESS1
|
||
|
DOUBLE PRECISION DEL1, DEL2, DMAX, DMIN, DRAT1, DRAT2, HSUM,
|
||
|
* HSUMT3, THREE, W1, W2, ZERO
|
||
|
SAVE ZERO, THREE
|
||
|
DOUBLE PRECISION DPCHST
|
||
|
C
|
||
|
C INITIALIZE.
|
||
|
C
|
||
|
DATA ZERO /0.D0/, THREE/3.D0/
|
||
|
C***FIRST EXECUTABLE STATEMENT DPCHCI
|
||
|
NLESS1 = N - 1
|
||
|
DEL1 = SLOPE(1)
|
||
|
C
|
||
|
C SPECIAL CASE N=2 -- USE LINEAR INTERPOLATION.
|
||
|
C
|
||
|
IF (NLESS1 .GT. 1) GO TO 10
|
||
|
D(1,1) = DEL1
|
||
|
D(1,N) = DEL1
|
||
|
GO TO 5000
|
||
|
C
|
||
|
C NORMAL CASE (N .GE. 3).
|
||
|
C
|
||
|
10 CONTINUE
|
||
|
DEL2 = SLOPE(2)
|
||
|
C
|
||
|
C SET D(1) VIA NON-CENTERED THREE-POINT FORMULA, ADJUSTED TO BE
|
||
|
C SHAPE-PRESERVING.
|
||
|
C
|
||
|
HSUM = H(1) + H(2)
|
||
|
W1 = (H(1) + HSUM)/HSUM
|
||
|
W2 = -H(1)/HSUM
|
||
|
D(1,1) = W1*DEL1 + W2*DEL2
|
||
|
IF ( DPCHST(D(1,1),DEL1) .LE. ZERO) THEN
|
||
|
D(1,1) = ZERO
|
||
|
ELSE IF ( DPCHST(DEL1,DEL2) .LT. ZERO) THEN
|
||
|
C NEED DO THIS CHECK ONLY IF MONOTONICITY SWITCHES.
|
||
|
DMAX = THREE*DEL1
|
||
|
IF (ABS(D(1,1)) .GT. ABS(DMAX)) D(1,1) = DMAX
|
||
|
ENDIF
|
||
|
C
|
||
|
C LOOP THROUGH INTERIOR POINTS.
|
||
|
C
|
||
|
DO 50 I = 2, NLESS1
|
||
|
IF (I .EQ. 2) GO TO 40
|
||
|
C
|
||
|
HSUM = H(I-1) + H(I)
|
||
|
DEL1 = DEL2
|
||
|
DEL2 = SLOPE(I)
|
||
|
40 CONTINUE
|
||
|
C
|
||
|
C SET D(I)=0 UNLESS DATA ARE STRICTLY MONOTONIC.
|
||
|
C
|
||
|
D(1,I) = ZERO
|
||
|
IF ( DPCHST(DEL1,DEL2) .LE. ZERO) GO TO 50
|
||
|
C
|
||
|
C USE BRODLIE MODIFICATION OF BUTLAND FORMULA.
|
||
|
C
|
||
|
HSUMT3 = HSUM+HSUM+HSUM
|
||
|
W1 = (HSUM + H(I-1))/HSUMT3
|
||
|
W2 = (HSUM + H(I) )/HSUMT3
|
||
|
DMAX = MAX( ABS(DEL1), ABS(DEL2) )
|
||
|
DMIN = MIN( ABS(DEL1), ABS(DEL2) )
|
||
|
DRAT1 = DEL1/DMAX
|
||
|
DRAT2 = DEL2/DMAX
|
||
|
D(1,I) = DMIN/(W1*DRAT1 + W2*DRAT2)
|
||
|
C
|
||
|
50 CONTINUE
|
||
|
C
|
||
|
C SET D(N) VIA NON-CENTERED THREE-POINT FORMULA, ADJUSTED TO BE
|
||
|
C SHAPE-PRESERVING.
|
||
|
C
|
||
|
W1 = -H(N-1)/HSUM
|
||
|
W2 = (H(N-1) + HSUM)/HSUM
|
||
|
D(1,N) = W1*DEL1 + W2*DEL2
|
||
|
IF ( DPCHST(D(1,N),DEL2) .LE. ZERO) THEN
|
||
|
D(1,N) = ZERO
|
||
|
ELSE IF ( DPCHST(DEL1,DEL2) .LT. ZERO) THEN
|
||
|
C NEED DO THIS CHECK ONLY IF MONOTONICITY SWITCHES.
|
||
|
DMAX = THREE*DEL2
|
||
|
IF (ABS(D(1,N)) .GT. ABS(DMAX)) D(1,N) = DMAX
|
||
|
ENDIF
|
||
|
C
|
||
|
C NORMAL RETURN.
|
||
|
C
|
||
|
5000 CONTINUE
|
||
|
RETURN
|
||
|
C------------- LAST LINE OF DPCHCI FOLLOWS -----------------------------
|
||
|
END
|