OpenLibm/slatec/dpchcs.f

238 lines
8.5 KiB
FortranFixed
Raw Normal View History

*DECK DPCHCS
SUBROUTINE DPCHCS (SWITCH, N, H, SLOPE, D, INCFD, IERR)
C***BEGIN PROLOGUE DPCHCS
C***SUBSIDIARY
C***PURPOSE Adjusts derivative values for DPCHIC
C***LIBRARY SLATEC (PCHIP)
C***TYPE DOUBLE PRECISION (PCHCS-S, DPCHCS-D)
C***AUTHOR Fritsch, F. N., (LLNL)
C***DESCRIPTION
C
C DPCHCS: DPCHIC Monotonicity Switch Derivative Setter.
C
C Called by DPCHIC to adjust the values of D in the vicinity of a
C switch in direction of monotonicity, to produce a more "visually
C pleasing" curve than that given by DPCHIM .
C
C ----------------------------------------------------------------------
C
C Calling sequence:
C
C PARAMETER (INCFD = ...)
C INTEGER N, IERR
C DOUBLE PRECISION SWITCH, H(N), SLOPE(N), D(INCFD,N)
C
C CALL DPCHCS (SWITCH, N, H, SLOPE, D, INCFD, IERR)
C
C Parameters:
C
C SWITCH -- (input) indicates the amount of control desired over
C local excursions from data.
C
C N -- (input) number of data points. (assumes N.GT.2 .)
C
C H -- (input) real*8 array of interval lengths.
C SLOPE -- (input) real*8 array of data slopes.
C If the data are (X(I),Y(I)), I=1(1)N, then these inputs are:
C H(I) = X(I+1)-X(I),
C SLOPE(I) = (Y(I+1)-Y(I))/H(I), I=1(1)N-1.
C
C D -- (input) real*8 array of derivative values at the data points,
C as determined by DPCHCI.
C (output) derivatives in the vicinity of switches in direction
C of monotonicity may be adjusted to produce a more "visually
C pleasing" curve.
C The value corresponding to X(I) is stored in
C D(1+(I-1)*INCFD), I=1(1)N.
C No other entries in D are changed.
C
C INCFD -- (input) increment between successive values in D.
C This argument is provided primarily for 2-D applications.
C
C IERR -- (output) error flag. should be zero.
C If negative, trouble in DPCHSW. (should never happen.)
C
C -------
C WARNING: This routine does no validity-checking of arguments.
C -------
C
C Fortran intrinsics used: ABS, MAX, MIN.
C
C***SEE ALSO DPCHIC
C***ROUTINES CALLED DPCHST, DPCHSW
C***REVISION HISTORY (YYMMDD)
C 820218 DATE WRITTEN
C 820617 Redesigned to (1) fix problem with lack of continuity
C approaching a flat-topped peak (2) be cleaner and
C easier to verify.
C Eliminated subroutines PCHSA and PCHSX in the process.
C 820622 1. Limited fact to not exceed one, so computed D is a
C convex combination of DPCHCI value and DPCHSD value.
C 2. Changed fudge from 1 to 4 (based on experiments).
C 820623 Moved PCHSD to an inline function (eliminating MSWTYP).
C 820805 Converted to SLATEC library version.
C 870707 Corrected conversion to double precision.
C 870813 Minor cosmetic changes.
C 890411 Added SAVE statements (Vers. 3.2).
C 890531 Changed all specific intrinsics to generic. (WRB)
C 890831 Modified array declarations. (WRB)
C 891006 Modified spacing in computation of DFLOC. (WRB)
C 891006 REVISION DATE from Version 3.2
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900328 Added TYPE section. (WRB)
C 910408 Updated AUTHOR section in prologue. (WRB)
C 930503 Improved purpose. (FNF)
C***END PROLOGUE DPCHCS
C
C Programming notes:
C 1. The function DPCHST(ARG1,ARG2) is assumed to return zero if
C either argument is zero, +1 if they are of the same sign, and
C -1 if they are of opposite sign.
C**End
C
C DECLARE ARGUMENTS.
C
INTEGER N, INCFD, IERR
DOUBLE PRECISION SWITCH, H(*), SLOPE(*), D(INCFD,*)
C
C DECLARE LOCAL VARIABLES.
C
INTEGER I, INDX, K, NLESS1
DOUBLE PRECISION DEL(3), DEXT, DFLOC, DFMX, FACT, FUDGE, ONE,
* SLMAX, WTAVE(2), ZERO
SAVE ZERO, ONE, FUDGE
DOUBLE PRECISION DPCHST
C
C DEFINE INLINE FUNCTION FOR WEIGHTED AVERAGE OF SLOPES.
C
DOUBLE PRECISION DPCHSD, S1, S2, H1, H2
DPCHSD(S1,S2,H1,H2) = (H2/(H1+H2))*S1 + (H1/(H1+H2))*S2
C
C INITIALIZE.
C
DATA ZERO /0.D0/, ONE/1.D0/
DATA FUDGE /4.D0/
C***FIRST EXECUTABLE STATEMENT DPCHCS
IERR = 0
NLESS1 = N - 1
C
C LOOP OVER SEGMENTS.
C
DO 900 I = 2, NLESS1
IF ( DPCHST(SLOPE(I-1),SLOPE(I)) ) 100, 300, 900
C --------------------------
C
100 CONTINUE
C
C....... SLOPE SWITCHES MONOTONICITY AT I-TH POINT .....................
C
C DO NOT CHANGE D IF 'UP-DOWN-UP'.
IF (I .GT. 2) THEN
IF ( DPCHST(SLOPE(I-2),SLOPE(I)) .GT. ZERO) GO TO 900
C --------------------------
ENDIF
IF (I .LT. NLESS1) THEN
IF ( DPCHST(SLOPE(I+1),SLOPE(I-1)) .GT. ZERO) GO TO 900
C ----------------------------
ENDIF
C
C ....... COMPUTE PROVISIONAL VALUE FOR D(1,I).
C
DEXT = DPCHSD (SLOPE(I-1), SLOPE(I), H(I-1), H(I))
C
C ....... DETERMINE WHICH INTERVAL CONTAINS THE EXTREMUM.
C
IF ( DPCHST(DEXT, SLOPE(I-1)) ) 200, 900, 250
C -----------------------
C
200 CONTINUE
C DEXT AND SLOPE(I-1) HAVE OPPOSITE SIGNS --
C EXTREMUM IS IN (X(I-1),X(I)).
K = I-1
C SET UP TO COMPUTE NEW VALUES FOR D(1,I-1) AND D(1,I).
WTAVE(2) = DEXT
IF (K .GT. 1)
* WTAVE(1) = DPCHSD (SLOPE(K-1), SLOPE(K), H(K-1), H(K))
GO TO 400
C
250 CONTINUE
C DEXT AND SLOPE(I) HAVE OPPOSITE SIGNS --
C EXTREMUM IS IN (X(I),X(I+1)).
K = I
C SET UP TO COMPUTE NEW VALUES FOR D(1,I) AND D(1,I+1).
WTAVE(1) = DEXT
IF (K .LT. NLESS1)
* WTAVE(2) = DPCHSD (SLOPE(K), SLOPE(K+1), H(K), H(K+1))
GO TO 400
C
300 CONTINUE
C
C....... AT LEAST ONE OF SLOPE(I-1) AND SLOPE(I) IS ZERO --
C CHECK FOR FLAT-TOPPED PEAK .......................
C
IF (I .EQ. NLESS1) GO TO 900
IF ( DPCHST(SLOPE(I-1), SLOPE(I+1)) .GE. ZERO) GO TO 900
C -----------------------------
C
C WE HAVE FLAT-TOPPED PEAK ON (X(I),X(I+1)).
K = I
C SET UP TO COMPUTE NEW VALUES FOR D(1,I) AND D(1,I+1).
WTAVE(1) = DPCHSD (SLOPE(K-1), SLOPE(K), H(K-1), H(K))
WTAVE(2) = DPCHSD (SLOPE(K), SLOPE(K+1), H(K), H(K+1))
C
400 CONTINUE
C
C....... AT THIS POINT WE HAVE DETERMINED THAT THERE WILL BE AN EXTREMUM
C ON (X(K),X(K+1)), WHERE K=I OR I-1, AND HAVE SET ARRAY WTAVE--
C WTAVE(1) IS A WEIGHTED AVERAGE OF SLOPE(K-1) AND SLOPE(K),
C IF K.GT.1
C WTAVE(2) IS A WEIGHTED AVERAGE OF SLOPE(K) AND SLOPE(K+1),
C IF K.LT.N-1
C
SLMAX = ABS(SLOPE(K))
IF (K .GT. 1) SLMAX = MAX( SLMAX, ABS(SLOPE(K-1)) )
IF (K.LT.NLESS1) SLMAX = MAX( SLMAX, ABS(SLOPE(K+1)) )
C
IF (K .GT. 1) DEL(1) = SLOPE(K-1) / SLMAX
DEL(2) = SLOPE(K) / SLMAX
IF (K.LT.NLESS1) DEL(3) = SLOPE(K+1) / SLMAX
C
IF ((K.GT.1) .AND. (K.LT.NLESS1)) THEN
C NORMAL CASE -- EXTREMUM IS NOT IN A BOUNDARY INTERVAL.
FACT = FUDGE* ABS(DEL(3)*(DEL(1)-DEL(2))*(WTAVE(2)/SLMAX))
D(1,K) = D(1,K) + MIN(FACT,ONE)*(WTAVE(1) - D(1,K))
FACT = FUDGE* ABS(DEL(1)*(DEL(3)-DEL(2))*(WTAVE(1)/SLMAX))
D(1,K+1) = D(1,K+1) + MIN(FACT,ONE)*(WTAVE(2) - D(1,K+1))
ELSE
C SPECIAL CASE K=1 (WHICH CAN OCCUR ONLY IF I=2) OR
C K=NLESS1 (WHICH CAN OCCUR ONLY IF I=NLESS1).
FACT = FUDGE* ABS(DEL(2))
D(1,I) = MIN(FACT,ONE) * WTAVE(I-K+1)
C NOTE THAT I-K+1 = 1 IF K=I (=NLESS1),
C I-K+1 = 2 IF K=I-1(=1).
ENDIF
C
C
C....... ADJUST IF NECESSARY TO LIMIT EXCURSIONS FROM DATA.
C
IF (SWITCH .LE. ZERO) GO TO 900
C
DFLOC = H(K)*ABS(SLOPE(K))
IF (K .GT. 1) DFLOC = MAX( DFLOC, H(K-1)*ABS(SLOPE(K-1)) )
IF (K.LT.NLESS1) DFLOC = MAX( DFLOC, H(K+1)*ABS(SLOPE(K+1)) )
DFMX = SWITCH*DFLOC
INDX = I-K+1
C INDX = 1 IF K=I, 2 IF K=I-1.
C ---------------------------------------------------------------
CALL DPCHSW(DFMX, INDX, D(1,K), D(1,K+1), H(K), SLOPE(K), IERR)
C ---------------------------------------------------------------
IF (IERR .NE. 0) RETURN
C
C....... END OF SEGMENT LOOP.
C
900 CONTINUE
C
RETURN
C------------- LAST LINE OF DPCHCS FOLLOWS -----------------------------
END