mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-03 23:43:41 +01:00
235 lines
7.4 KiB
FortranFixed
235 lines
7.4 KiB
FortranFixed
|
*DECK DPPCO
|
||
|
SUBROUTINE DPPCO (AP, N, RCOND, Z, INFO)
|
||
|
C***BEGIN PROLOGUE DPPCO
|
||
|
C***PURPOSE Factor a symmetric positive definite matrix stored in
|
||
|
C packed form and estimate the condition number of the
|
||
|
C matrix.
|
||
|
C***LIBRARY SLATEC (LINPACK)
|
||
|
C***CATEGORY D2B1B
|
||
|
C***TYPE DOUBLE PRECISION (SPPCO-S, DPPCO-D, CPPCO-C)
|
||
|
C***KEYWORDS CONDITION NUMBER, LINEAR ALGEBRA, LINPACK,
|
||
|
C MATRIX FACTORIZATION, PACKED, POSITIVE DEFINITE
|
||
|
C***AUTHOR Moler, C. B., (U. of New Mexico)
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C DPPCO factors a double precision symmetric positive definite
|
||
|
C matrix stored in packed form
|
||
|
C and estimates the condition of the matrix.
|
||
|
C
|
||
|
C If RCOND is not needed, DPPFA is slightly faster.
|
||
|
C To solve A*X = B , follow DPPCO by DPPSL.
|
||
|
C To compute INVERSE(A)*C , follow DPPCO by DPPSL.
|
||
|
C To compute DETERMINANT(A) , follow DPPCO by DPPDI.
|
||
|
C To compute INVERSE(A) , follow DPPCO by DPPDI.
|
||
|
C
|
||
|
C On Entry
|
||
|
C
|
||
|
C AP DOUBLE PRECISION (N*(N+1)/2)
|
||
|
C the packed form of a symmetric matrix A . The
|
||
|
C columns of the upper triangle are stored sequentially
|
||
|
C in a one-dimensional array of length N*(N+1)/2 .
|
||
|
C See comments below for details.
|
||
|
C
|
||
|
C N INTEGER
|
||
|
C the order of the matrix A .
|
||
|
C
|
||
|
C On Return
|
||
|
C
|
||
|
C AP an upper triangular matrix R , stored in packed
|
||
|
C form, so that A = TRANS(R)*R .
|
||
|
C If INFO .NE. 0 , the factorization is not complete.
|
||
|
C
|
||
|
C RCOND DOUBLE PRECISION
|
||
|
C an estimate of the reciprocal condition of A .
|
||
|
C For the system A*X = B , relative perturbations
|
||
|
C in A and B of size EPSILON may cause
|
||
|
C relative perturbations in X of size EPSILON/RCOND .
|
||
|
C If RCOND is so small that the logical expression
|
||
|
C 1.0 + RCOND .EQ. 1.0
|
||
|
C is true, then A may be singular to working
|
||
|
C precision. In particular, RCOND is zero if
|
||
|
C exact singularity is detected or the estimate
|
||
|
C underflows. If INFO .NE. 0 , RCOND is unchanged.
|
||
|
C
|
||
|
C Z DOUBLE PRECISION(N)
|
||
|
C a work vector whose contents are usually unimportant.
|
||
|
C If A is singular to working precision, then Z is
|
||
|
C an approximate null vector in the sense that
|
||
|
C NORM(A*Z) = RCOND*NORM(A)*NORM(Z) .
|
||
|
C If INFO .NE. 0 , Z is unchanged.
|
||
|
C
|
||
|
C INFO INTEGER
|
||
|
C = 0 for normal return.
|
||
|
C = K signals an error condition. The leading minor
|
||
|
C of order K is not positive definite.
|
||
|
C
|
||
|
C Packed Storage
|
||
|
C
|
||
|
C The following program segment will pack the upper
|
||
|
C triangle of a symmetric matrix.
|
||
|
C
|
||
|
C K = 0
|
||
|
C DO 20 J = 1, N
|
||
|
C DO 10 I = 1, J
|
||
|
C K = K + 1
|
||
|
C AP(K) = A(I,J)
|
||
|
C 10 CONTINUE
|
||
|
C 20 CONTINUE
|
||
|
C
|
||
|
C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
|
||
|
C Stewart, LINPACK Users' Guide, SIAM, 1979.
|
||
|
C***ROUTINES CALLED DASUM, DAXPY, DDOT, DPPFA, DSCAL
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 780814 DATE WRITTEN
|
||
|
C 890531 Changed all specific intrinsics to generic. (WRB)
|
||
|
C 890831 Modified array declarations. (WRB)
|
||
|
C 890831 REVISION DATE from Version 3.2
|
||
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C 900326 Removed duplicate information from DESCRIPTION section.
|
||
|
C (WRB)
|
||
|
C 920501 Reformatted the REFERENCES section. (WRB)
|
||
|
C***END PROLOGUE DPPCO
|
||
|
INTEGER N,INFO
|
||
|
DOUBLE PRECISION AP(*),Z(*)
|
||
|
DOUBLE PRECISION RCOND
|
||
|
C
|
||
|
DOUBLE PRECISION DDOT,EK,T,WK,WKM
|
||
|
DOUBLE PRECISION ANORM,S,DASUM,SM,YNORM
|
||
|
INTEGER I,IJ,J,JM1,J1,K,KB,KJ,KK,KP1
|
||
|
C
|
||
|
C FIND NORM OF A
|
||
|
C
|
||
|
C***FIRST EXECUTABLE STATEMENT DPPCO
|
||
|
J1 = 1
|
||
|
DO 30 J = 1, N
|
||
|
Z(J) = DASUM(J,AP(J1),1)
|
||
|
IJ = J1
|
||
|
J1 = J1 + J
|
||
|
JM1 = J - 1
|
||
|
IF (JM1 .LT. 1) GO TO 20
|
||
|
DO 10 I = 1, JM1
|
||
|
Z(I) = Z(I) + ABS(AP(IJ))
|
||
|
IJ = IJ + 1
|
||
|
10 CONTINUE
|
||
|
20 CONTINUE
|
||
|
30 CONTINUE
|
||
|
ANORM = 0.0D0
|
||
|
DO 40 J = 1, N
|
||
|
ANORM = MAX(ANORM,Z(J))
|
||
|
40 CONTINUE
|
||
|
C
|
||
|
C FACTOR
|
||
|
C
|
||
|
CALL DPPFA(AP,N,INFO)
|
||
|
IF (INFO .NE. 0) GO TO 180
|
||
|
C
|
||
|
C RCOND = 1/(NORM(A)*(ESTIMATE OF NORM(INVERSE(A)))) .
|
||
|
C ESTIMATE = NORM(Z)/NORM(Y) WHERE A*Z = Y AND A*Y = E .
|
||
|
C THE COMPONENTS OF E ARE CHOSEN TO CAUSE MAXIMUM LOCAL
|
||
|
C GROWTH IN THE ELEMENTS OF W WHERE TRANS(R)*W = E .
|
||
|
C THE VECTORS ARE FREQUENTLY RESCALED TO AVOID OVERFLOW.
|
||
|
C
|
||
|
C SOLVE TRANS(R)*W = E
|
||
|
C
|
||
|
EK = 1.0D0
|
||
|
DO 50 J = 1, N
|
||
|
Z(J) = 0.0D0
|
||
|
50 CONTINUE
|
||
|
KK = 0
|
||
|
DO 110 K = 1, N
|
||
|
KK = KK + K
|
||
|
IF (Z(K) .NE. 0.0D0) EK = SIGN(EK,-Z(K))
|
||
|
IF (ABS(EK-Z(K)) .LE. AP(KK)) GO TO 60
|
||
|
S = AP(KK)/ABS(EK-Z(K))
|
||
|
CALL DSCAL(N,S,Z,1)
|
||
|
EK = S*EK
|
||
|
60 CONTINUE
|
||
|
WK = EK - Z(K)
|
||
|
WKM = -EK - Z(K)
|
||
|
S = ABS(WK)
|
||
|
SM = ABS(WKM)
|
||
|
WK = WK/AP(KK)
|
||
|
WKM = WKM/AP(KK)
|
||
|
KP1 = K + 1
|
||
|
KJ = KK + K
|
||
|
IF (KP1 .GT. N) GO TO 100
|
||
|
DO 70 J = KP1, N
|
||
|
SM = SM + ABS(Z(J)+WKM*AP(KJ))
|
||
|
Z(J) = Z(J) + WK*AP(KJ)
|
||
|
S = S + ABS(Z(J))
|
||
|
KJ = KJ + J
|
||
|
70 CONTINUE
|
||
|
IF (S .GE. SM) GO TO 90
|
||
|
T = WKM - WK
|
||
|
WK = WKM
|
||
|
KJ = KK + K
|
||
|
DO 80 J = KP1, N
|
||
|
Z(J) = Z(J) + T*AP(KJ)
|
||
|
KJ = KJ + J
|
||
|
80 CONTINUE
|
||
|
90 CONTINUE
|
||
|
100 CONTINUE
|
||
|
Z(K) = WK
|
||
|
110 CONTINUE
|
||
|
S = 1.0D0/DASUM(N,Z,1)
|
||
|
CALL DSCAL(N,S,Z,1)
|
||
|
C
|
||
|
C SOLVE R*Y = W
|
||
|
C
|
||
|
DO 130 KB = 1, N
|
||
|
K = N + 1 - KB
|
||
|
IF (ABS(Z(K)) .LE. AP(KK)) GO TO 120
|
||
|
S = AP(KK)/ABS(Z(K))
|
||
|
CALL DSCAL(N,S,Z,1)
|
||
|
120 CONTINUE
|
||
|
Z(K) = Z(K)/AP(KK)
|
||
|
KK = KK - K
|
||
|
T = -Z(K)
|
||
|
CALL DAXPY(K-1,T,AP(KK+1),1,Z(1),1)
|
||
|
130 CONTINUE
|
||
|
S = 1.0D0/DASUM(N,Z,1)
|
||
|
CALL DSCAL(N,S,Z,1)
|
||
|
C
|
||
|
YNORM = 1.0D0
|
||
|
C
|
||
|
C SOLVE TRANS(R)*V = Y
|
||
|
C
|
||
|
DO 150 K = 1, N
|
||
|
Z(K) = Z(K) - DDOT(K-1,AP(KK+1),1,Z(1),1)
|
||
|
KK = KK + K
|
||
|
IF (ABS(Z(K)) .LE. AP(KK)) GO TO 140
|
||
|
S = AP(KK)/ABS(Z(K))
|
||
|
CALL DSCAL(N,S,Z,1)
|
||
|
YNORM = S*YNORM
|
||
|
140 CONTINUE
|
||
|
Z(K) = Z(K)/AP(KK)
|
||
|
150 CONTINUE
|
||
|
S = 1.0D0/DASUM(N,Z,1)
|
||
|
CALL DSCAL(N,S,Z,1)
|
||
|
YNORM = S*YNORM
|
||
|
C
|
||
|
C SOLVE R*Z = V
|
||
|
C
|
||
|
DO 170 KB = 1, N
|
||
|
K = N + 1 - KB
|
||
|
IF (ABS(Z(K)) .LE. AP(KK)) GO TO 160
|
||
|
S = AP(KK)/ABS(Z(K))
|
||
|
CALL DSCAL(N,S,Z,1)
|
||
|
YNORM = S*YNORM
|
||
|
160 CONTINUE
|
||
|
Z(K) = Z(K)/AP(KK)
|
||
|
KK = KK - K
|
||
|
T = -Z(K)
|
||
|
CALL DAXPY(K-1,T,AP(KK+1),1,Z(1),1)
|
||
|
170 CONTINUE
|
||
|
C MAKE ZNORM = 1.0
|
||
|
S = 1.0D0/DASUM(N,Z,1)
|
||
|
CALL DSCAL(N,S,Z,1)
|
||
|
YNORM = S*YNORM
|
||
|
C
|
||
|
IF (ANORM .NE. 0.0D0) RCOND = YNORM/ANORM
|
||
|
IF (ANORM .EQ. 0.0D0) RCOND = 0.0D0
|
||
|
180 CONTINUE
|
||
|
RETURN
|
||
|
END
|