mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-04 07:53:38 +01:00
105 lines
3.8 KiB
FortranFixed
105 lines
3.8 KiB
FortranFixed
|
*DECK DPPVAL
|
||
|
DOUBLE PRECISION FUNCTION DPPVAL (LDC, C, XI, LXI, K, IDERIV, X,
|
||
|
+ INPPV)
|
||
|
C***BEGIN PROLOGUE DPPVAL
|
||
|
C***PURPOSE Calculate the value of the IDERIV-th derivative of the
|
||
|
C B-spline from the PP-representation.
|
||
|
C***LIBRARY SLATEC
|
||
|
C***CATEGORY E3, K6
|
||
|
C***TYPE DOUBLE PRECISION (PPVAL-S, DPPVAL-D)
|
||
|
C***KEYWORDS B-SPLINE, DATA FITTING, INTERPOLATION, SPLINES
|
||
|
C***AUTHOR Amos, D. E., (SNLA)
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C Written by Carl de Boor and modified by D. E. Amos
|
||
|
C
|
||
|
C Abstract **** a double precision routine ****
|
||
|
C DPPVAL is the PPVALU function of the reference.
|
||
|
C
|
||
|
C DPPVAL calculates (at X) the value of the IDERIV-th
|
||
|
C derivative of the B-spline from the PP-representation
|
||
|
C (C,XI,LXI,K). The Taylor expansion about XI(J) for X in
|
||
|
C the interval XI(J) .LE. X .LT. XI(J+1) is evaluated, J=1,LXI.
|
||
|
C Right limiting values at X=XI(J) are obtained. DPPVAL will
|
||
|
C extrapolate beyond XI(1) and XI(LXI+1).
|
||
|
C
|
||
|
C To obtain left limiting values (left derivatives) at XI(J)
|
||
|
C replace LXI by J-1 and set X=XI(J),J=2,LXI+1.
|
||
|
C
|
||
|
C Description of Arguments
|
||
|
C
|
||
|
C Input C,XI,X are double precision
|
||
|
C LDC - leading dimension of C matrix, LDC .GE. K
|
||
|
C C - matrix of dimension at least (K,LXI) containing
|
||
|
C right derivatives at break points XI(*).
|
||
|
C XI - break point vector of length LXI+1
|
||
|
C LXI - number of polynomial pieces
|
||
|
C K - order of B-spline, K .GE. 1
|
||
|
C IDERIV - order of the derivative, 0 .LE. IDERIV .LE. K-1
|
||
|
C IDERIV=0 gives the B-spline value
|
||
|
C X - argument, XI(1) .LE. X .LE. XI(LXI+1)
|
||
|
C INPPV - an initialization parameter which must be set
|
||
|
C to 1 the first time DPPVAL is called.
|
||
|
C
|
||
|
C Output DPPVAL is double precision
|
||
|
C INPPV - INPPV contains information for efficient process-
|
||
|
C ing after the initial call and INPPV must not
|
||
|
C be changed by the user. Distinct splines require
|
||
|
C distinct INPPV parameters.
|
||
|
C DPPVAL - value of the IDERIV-th derivative at X
|
||
|
C
|
||
|
C Error Conditions
|
||
|
C Improper input is a fatal error
|
||
|
C
|
||
|
C***REFERENCES Carl de Boor, Package for calculating with B-splines,
|
||
|
C SIAM Journal on Numerical Analysis 14, 3 (June 1977),
|
||
|
C pp. 441-472.
|
||
|
C***ROUTINES CALLED DINTRV, XERMSG
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 800901 DATE WRITTEN
|
||
|
C 890831 Modified array declarations. (WRB)
|
||
|
C 890831 REVISION DATE from Version 3.2
|
||
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
|
||
|
C 920501 Reformatted the REFERENCES section. (WRB)
|
||
|
C***END PROLOGUE DPPVAL
|
||
|
C
|
||
|
INTEGER I, IDERIV, INPPV, J, K, LDC, LXI, NDUMMY, KK
|
||
|
DOUBLE PRECISION C, DX, X, XI
|
||
|
DIMENSION XI(*), C(LDC,*)
|
||
|
C***FIRST EXECUTABLE STATEMENT DPPVAL
|
||
|
DPPVAL = 0.0D0
|
||
|
IF(K.LT.1) GO TO 90
|
||
|
IF(LDC.LT.K) GO TO 80
|
||
|
IF(LXI.LT.1) GO TO 85
|
||
|
IF(IDERIV.LT.0 .OR. IDERIV.GE.K) GO TO 95
|
||
|
I = K - IDERIV
|
||
|
KK = I
|
||
|
CALL DINTRV(XI, LXI, X, INPPV, I, NDUMMY)
|
||
|
DX = X - XI(I)
|
||
|
J = K
|
||
|
10 DPPVAL = (DPPVAL/KK)*DX + C(J,I)
|
||
|
J = J - 1
|
||
|
KK = KK - 1
|
||
|
IF (KK.GT.0) GO TO 10
|
||
|
RETURN
|
||
|
C
|
||
|
C
|
||
|
80 CONTINUE
|
||
|
CALL XERMSG ('SLATEC', 'DPPVAL', 'LDC DOES NOT SATISFY LDC.GE.K',
|
||
|
+ 2, 1)
|
||
|
RETURN
|
||
|
85 CONTINUE
|
||
|
CALL XERMSG ('SLATEC', 'DPPVAL', 'LXI DOES NOT SATISFY LXI.GE.1',
|
||
|
+ 2, 1)
|
||
|
RETURN
|
||
|
90 CONTINUE
|
||
|
CALL XERMSG ('SLATEC', 'DPPVAL', 'K DOES NOT SATISFY K.GE.1', 2,
|
||
|
+ 1)
|
||
|
RETURN
|
||
|
95 CONTINUE
|
||
|
CALL XERMSG ('SLATEC', 'DPPVAL',
|
||
|
+ 'IDERIV DOES NOT SATISFY 0.LE.IDERIV.LT.K', 2, 1)
|
||
|
RETURN
|
||
|
END
|