OpenLibm/slatec/dpsixn.f

123 lines
5.8 KiB
FortranFixed
Raw Normal View History

*DECK DPSIXN
DOUBLE PRECISION FUNCTION DPSIXN (N)
C***BEGIN PROLOGUE DPSIXN
C***SUBSIDIARY
C***PURPOSE Subsidiary to DEXINT
C***LIBRARY SLATEC
C***TYPE DOUBLE PRECISION (PSIXN-S, DPSIXN-D)
C***AUTHOR Amos, D. E., (SNLA)
C***DESCRIPTION
C
C This subroutine returns values of PSI(X)=derivative of log
C GAMMA(X), X.GT.0.0 at integer arguments. A table look-up is
C performed for N .LE. 100, and the asymptotic expansion is
C evaluated for N.GT.100.
C
C***SEE ALSO DEXINT
C***ROUTINES CALLED D1MACH
C***REVISION HISTORY (YYMMDD)
C 800501 DATE WRITTEN
C 890531 Changed all specific intrinsics to generic. (WRB)
C 890911 Removed unnecessary intrinsics. (WRB)
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900328 Added TYPE section. (WRB)
C 910722 Updated AUTHOR section. (ALS)
C***END PROLOGUE DPSIXN
C
INTEGER N, K
DOUBLE PRECISION AX, B, C, FN, RFN2, TRM, S, WDTOL
DOUBLE PRECISION D1MACH
DIMENSION B(6), C(100)
C
C DPSIXN(N), N = 1,100
DATA C(1), C(2), C(3), C(4), C(5), C(6), C(7), C(8), C(9), C(10),
1 C(11), C(12), C(13), C(14), C(15), C(16), C(17), C(18),
2 C(19), C(20), C(21), C(22), C(23), C(24)/
3 -5.77215664901532861D-01, 4.22784335098467139D-01,
4 9.22784335098467139D-01, 1.25611766843180047D+00,
5 1.50611766843180047D+00, 1.70611766843180047D+00,
6 1.87278433509846714D+00, 2.01564147795561000D+00,
7 2.14064147795561000D+00, 2.25175258906672111D+00,
8 2.35175258906672111D+00, 2.44266167997581202D+00,
9 2.52599501330914535D+00, 2.60291809023222227D+00,
1 2.67434666166079370D+00, 2.74101332832746037D+00,
2 2.80351332832746037D+00, 2.86233685773922507D+00,
3 2.91789241329478063D+00, 2.97052399224214905D+00,
4 3.02052399224214905D+00, 3.06814303986119667D+00,
5 3.11359758531574212D+00, 3.15707584618530734D+00/
DATA C(25), C(26), C(27), C(28), C(29), C(30), C(31), C(32),
1 C(33), C(34), C(35), C(36), C(37), C(38), C(39), C(40),
2 C(41), C(42), C(43), C(44), C(45), C(46), C(47), C(48)/
3 3.19874251285197401D+00, 3.23874251285197401D+00,
4 3.27720405131351247D+00, 3.31424108835054951D+00,
5 3.34995537406483522D+00, 3.38443813268552488D+00,
6 3.41777146601885821D+00, 3.45002953053498724D+00,
7 3.48127953053498724D+00, 3.51158256083801755D+00,
8 3.54099432554389990D+00, 3.56956575411532847D+00,
9 3.59734353189310625D+00, 3.62437055892013327D+00,
1 3.65068634839381748D+00, 3.67632737403484313D+00,
2 3.70132737403484313D+00, 3.72571761793728215D+00,
3 3.74952714174680596D+00, 3.77278295570029433D+00,
4 3.79551022842756706D+00, 3.81773245064978928D+00,
5 3.83947158108457189D+00, 3.86074817682925274D+00/
DATA C(49), C(50), C(51), C(52), C(53), C(54), C(55), C(56),
1 C(57), C(58), C(59), C(60), C(61), C(62), C(63), C(64),
2 C(65), C(66), C(67), C(68), C(69), C(70), C(71), C(72)/
3 3.88158151016258607D+00, 3.90198967342789220D+00,
4 3.92198967342789220D+00, 3.94159751656514710D+00,
5 3.96082828579591633D+00, 3.97969621032421822D+00,
6 3.99821472884273674D+00, 4.01639654702455492D+00,
7 4.03425368988169777D+00, 4.05179754953082058D+00,
8 4.06903892884116541D+00, 4.08598808138353829D+00,
9 4.10265474805020496D+00, 4.11904819067315578D+00,
1 4.13517722293122029D+00, 4.15105023880423617D+00,
2 4.16667523880423617D+00, 4.18205985418885155D+00,
3 4.19721136934036670D+00, 4.21213674247469506D+00,
4 4.22684262482763624D+00, 4.24133537845082464D+00,
5 4.25562109273653893D+00, 4.26970559977879245D+00/
DATA C(73), C(74), C(75), C(76), C(77), C(78), C(79), C(80),
1 C(81), C(82), C(83), C(84), C(85), C(86), C(87), C(88),
2 C(89), C(90), C(91), C(92), C(93), C(94), C(95), C(96)/
3 4.28359448866768134D+00, 4.29729311880466764D+00,
4 4.31080663231818115D+00, 4.32413996565151449D+00,
5 4.33729786038835659D+00, 4.35028487337536958D+00,
6 4.36310538619588240D+00, 4.37576361404398366D+00,
7 4.38826361404398366D+00, 4.40060929305632934D+00,
8 4.41280441500754886D+00, 4.42485260777863319D+00,
9 4.43675736968339510D+00, 4.44852207556574804D+00,
1 4.46014998254249223D+00, 4.47164423541605544D+00,
2 4.48300787177969181D+00, 4.49424382683587158D+00,
3 4.50535493794698269D+00, 4.51634394893599368D+00,
4 4.52721351415338499D+00, 4.53796620232542800D+00,
5 4.54860450019776842D+00, 4.55913081598724211D+00/
DATA C(97), C(98), C(99), C(100)/
1 4.56954748265390877D+00, 4.57985676100442424D+00,
2 4.59006084263707730D+00, 4.60016185273808740D+00/
C COEFFICIENTS OF ASYMPTOTIC EXPANSION
DATA B(1), B(2), B(3), B(4), B(5), B(6)/
1 8.33333333333333333D-02, -8.33333333333333333D-03,
2 3.96825396825396825D-03, -4.16666666666666666D-03,
3 7.57575757575757576D-03, -2.10927960927960928D-02/
C
C***FIRST EXECUTABLE STATEMENT DPSIXN
IF (N.GT.100) GO TO 10
DPSIXN = C(N)
RETURN
10 CONTINUE
WDTOL = MAX(D1MACH(4),1.0D-18)
FN = N
AX = 1.0D0
S = -0.5D0/FN
IF (ABS(S).LE.WDTOL) GO TO 30
RFN2 = 1.0D0/(FN*FN)
DO 20 K=1,6
AX = AX*RFN2
TRM = -B(K)*AX
IF (ABS(TRM).LT.WDTOL) GO TO 30
S = S + TRM
20 CONTINUE
30 CONTINUE
DPSIXN = S + LOG(FN)
RETURN
END