OpenLibm/slatec/dptsl.f

107 lines
3.1 KiB
FortranFixed
Raw Normal View History

*DECK DPTSL
SUBROUTINE DPTSL (N, D, E, B)
C***BEGIN PROLOGUE DPTSL
C***PURPOSE Solve a positive definite tridiagonal linear system.
C***LIBRARY SLATEC (LINPACK)
C***CATEGORY D2B2A
C***TYPE DOUBLE PRECISION (SPTSL-S, DPTSL-D, CPTSL-C)
C***KEYWORDS LINEAR ALGEBRA, LINPACK, MATRIX, POSITIVE DEFINITE, SOLVE,
C TRIDIAGONAL
C***AUTHOR Dongarra, J., (ANL)
C***DESCRIPTION
C
C DPTSL, given a positive definite symmetric tridiagonal matrix and
C a right hand side, will find the solution.
C
C On Entry
C
C N INTEGER
C is the order of the tridiagonal matrix.
C
C D DOUBLE PRECISION(N)
C is the diagonal of the tridiagonal matrix.
C On output D is destroyed.
C
C E DOUBLE PRECISION(N)
C is the offdiagonal of the tridiagonal matrix.
C E(1) through E(N-1) should contain the
C offdiagonal.
C
C B DOUBLE PRECISION(N)
C is the right hand side vector.
C
C On Return
C
C B contains the solution.
C
C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
C Stewart, LINPACK Users' Guide, SIAM, 1979.
C***ROUTINES CALLED (NONE)
C***REVISION HISTORY (YYMMDD)
C 780814 DATE WRITTEN
C 890505 REVISION DATE from Version 3.2
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900326 Removed duplicate information from DESCRIPTION section.
C (WRB)
C 920501 Reformatted the REFERENCES section. (WRB)
C***END PROLOGUE DPTSL
INTEGER N
DOUBLE PRECISION D(*),E(*),B(*)
C
INTEGER K,KBM1,KE,KF,KP1,NM1,NM1D2
DOUBLE PRECISION T1,T2
C
C CHECK FOR 1 X 1 CASE
C
C***FIRST EXECUTABLE STATEMENT DPTSL
IF (N .NE. 1) GO TO 10
B(1) = B(1)/D(1)
GO TO 70
10 CONTINUE
NM1 = N - 1
NM1D2 = NM1/2
IF (N .EQ. 2) GO TO 30
KBM1 = N - 1
C
C ZERO TOP HALF OF SUBDIAGONAL AND BOTTOM HALF OF
C SUPERDIAGONAL
C
DO 20 K = 1, NM1D2
T1 = E(K)/D(K)
D(K+1) = D(K+1) - T1*E(K)
B(K+1) = B(K+1) - T1*B(K)
T2 = E(KBM1)/D(KBM1+1)
D(KBM1) = D(KBM1) - T2*E(KBM1)
B(KBM1) = B(KBM1) - T2*B(KBM1+1)
KBM1 = KBM1 - 1
20 CONTINUE
30 CONTINUE
KP1 = NM1D2 + 1
C
C CLEAN UP FOR POSSIBLE 2 X 2 BLOCK AT CENTER
C
IF (MOD(N,2) .NE. 0) GO TO 40
T1 = E(KP1)/D(KP1)
D(KP1+1) = D(KP1+1) - T1*E(KP1)
B(KP1+1) = B(KP1+1) - T1*B(KP1)
KP1 = KP1 + 1
40 CONTINUE
C
C BACK SOLVE STARTING AT THE CENTER, GOING TOWARDS THE TOP
C AND BOTTOM
C
B(KP1) = B(KP1)/D(KP1)
IF (N .EQ. 2) GO TO 60
K = KP1 - 1
KE = KP1 + NM1D2 - 1
DO 50 KF = KP1, KE
B(K) = (B(K) - E(K)*B(K+1))/D(K)
B(KF+1) = (B(KF+1) - E(KF)*B(KF))/D(KF+1)
K = K - 1
50 CONTINUE
60 CONTINUE
IF (MOD(N,2) .EQ. 0) B(1) = (B(1) - E(1)*B(2))/D(1)
70 CONTINUE
RETURN
END