mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-03 23:43:41 +01:00
352 lines
14 KiB
FortranFixed
352 lines
14 KiB
FortranFixed
|
*DECK DQAGE
|
||
|
SUBROUTINE DQAGE (F, A, B, EPSABS, EPSREL, KEY, LIMIT, RESULT,
|
||
|
+ ABSERR, NEVAL, IER, ALIST, BLIST, RLIST, ELIST, IORD, LAST)
|
||
|
C***BEGIN PROLOGUE DQAGE
|
||
|
C***PURPOSE The routine calculates an approximation result to a given
|
||
|
C definite integral I = Integral of F over (A,B),
|
||
|
C hopefully satisfying following claim for accuracy
|
||
|
C ABS(I-RESLT).LE.MAX(EPSABS,EPSREL*ABS(I)).
|
||
|
C***LIBRARY SLATEC (QUADPACK)
|
||
|
C***CATEGORY H2A1A1
|
||
|
C***TYPE DOUBLE PRECISION (QAGE-S, DQAGE-D)
|
||
|
C***KEYWORDS AUTOMATIC INTEGRATOR, GAUSS-KRONROD RULES,
|
||
|
C GENERAL-PURPOSE, GLOBALLY ADAPTIVE, INTEGRAND EXAMINATOR,
|
||
|
C QUADPACK, QUADRATURE
|
||
|
C***AUTHOR Piessens, Robert
|
||
|
C Applied Mathematics and Programming Division
|
||
|
C K. U. Leuven
|
||
|
C de Doncker, Elise
|
||
|
C Applied Mathematics and Programming Division
|
||
|
C K. U. Leuven
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C Computation of a definite integral
|
||
|
C Standard fortran subroutine
|
||
|
C Double precision version
|
||
|
C
|
||
|
C PARAMETERS
|
||
|
C ON ENTRY
|
||
|
C F - Double precision
|
||
|
C Function subprogram defining the integrand
|
||
|
C function F(X). The actual name for F needs to be
|
||
|
C declared E X T E R N A L in the driver program.
|
||
|
C
|
||
|
C A - Double precision
|
||
|
C Lower limit of integration
|
||
|
C
|
||
|
C B - Double precision
|
||
|
C Upper limit of integration
|
||
|
C
|
||
|
C EPSABS - Double precision
|
||
|
C Absolute accuracy requested
|
||
|
C EPSREL - Double precision
|
||
|
C Relative accuracy requested
|
||
|
C If EPSABS.LE.0
|
||
|
C and EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
|
||
|
C the routine will end with IER = 6.
|
||
|
C
|
||
|
C KEY - Integer
|
||
|
C Key for choice of local integration rule
|
||
|
C A Gauss-Kronrod pair is used with
|
||
|
C 7 - 15 points if KEY.LT.2,
|
||
|
C 10 - 21 points if KEY = 2,
|
||
|
C 15 - 31 points if KEY = 3,
|
||
|
C 20 - 41 points if KEY = 4,
|
||
|
C 25 - 51 points if KEY = 5,
|
||
|
C 30 - 61 points if KEY.GT.5.
|
||
|
C
|
||
|
C LIMIT - Integer
|
||
|
C Gives an upper bound on the number of subintervals
|
||
|
C in the partition of (A,B), LIMIT.GE.1.
|
||
|
C
|
||
|
C ON RETURN
|
||
|
C RESULT - Double precision
|
||
|
C Approximation to the integral
|
||
|
C
|
||
|
C ABSERR - Double precision
|
||
|
C Estimate of the modulus of the absolute error,
|
||
|
C which should equal or exceed ABS(I-RESULT)
|
||
|
C
|
||
|
C NEVAL - Integer
|
||
|
C Number of integrand evaluations
|
||
|
C
|
||
|
C IER - Integer
|
||
|
C IER = 0 Normal and reliable termination of the
|
||
|
C routine. It is assumed that the requested
|
||
|
C accuracy has been achieved.
|
||
|
C IER.GT.0 Abnormal termination of the routine
|
||
|
C The estimates for result and error are
|
||
|
C less reliable. It is assumed that the
|
||
|
C requested accuracy has not been achieved.
|
||
|
C ERROR MESSAGES
|
||
|
C IER = 1 Maximum number of subdivisions allowed
|
||
|
C has been achieved. One can allow more
|
||
|
C subdivisions by increasing the value
|
||
|
C of LIMIT.
|
||
|
C However, if this yields no improvement it
|
||
|
C is rather advised to analyze the integrand
|
||
|
C in order to determine the integration
|
||
|
C difficulties. If the position of a local
|
||
|
C difficulty can be determined(e.g.
|
||
|
C SINGULARITY, DISCONTINUITY within the
|
||
|
C interval) one will probably gain from
|
||
|
C splitting up the interval at this point
|
||
|
C and calling the integrator on the
|
||
|
C subranges. If possible, an appropriate
|
||
|
C special-purpose integrator should be used
|
||
|
C which is designed for handling the type of
|
||
|
C difficulty involved.
|
||
|
C = 2 The occurrence of roundoff error is
|
||
|
C detected, which prevents the requested
|
||
|
C tolerance from being achieved.
|
||
|
C = 3 Extremely bad integrand behaviour occurs
|
||
|
C at some points of the integration
|
||
|
C interval.
|
||
|
C = 6 The input is invalid, because
|
||
|
C (EPSABS.LE.0 and
|
||
|
C EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
|
||
|
C RESULT, ABSERR, NEVAL, LAST, RLIST(1) ,
|
||
|
C ELIST(1) and IORD(1) are set to zero.
|
||
|
C ALIST(1) and BLIST(1) are set to A and B
|
||
|
C respectively.
|
||
|
C
|
||
|
C ALIST - Double precision
|
||
|
C Vector of dimension at least LIMIT, the first
|
||
|
C LAST elements of which are the left
|
||
|
C end points of the subintervals in the partition
|
||
|
C of the given integration range (A,B)
|
||
|
C
|
||
|
C BLIST - Double precision
|
||
|
C Vector of dimension at least LIMIT, the first
|
||
|
C LAST elements of which are the right
|
||
|
C end points of the subintervals in the partition
|
||
|
C of the given integration range (A,B)
|
||
|
C
|
||
|
C RLIST - Double precision
|
||
|
C Vector of dimension at least LIMIT, the first
|
||
|
C LAST elements of which are the
|
||
|
C integral approximations on the subintervals
|
||
|
C
|
||
|
C ELIST - Double precision
|
||
|
C Vector of dimension at least LIMIT, the first
|
||
|
C LAST elements of which are the moduli of the
|
||
|
C absolute error estimates on the subintervals
|
||
|
C
|
||
|
C IORD - Integer
|
||
|
C Vector of dimension at least LIMIT, the first K
|
||
|
C elements of which are pointers to the
|
||
|
C error estimates over the subintervals,
|
||
|
C such that ELIST(IORD(1)), ...,
|
||
|
C ELIST(IORD(K)) form a decreasing sequence,
|
||
|
C with K = LAST if LAST.LE.(LIMIT/2+2), and
|
||
|
C K = LIMIT+1-LAST otherwise
|
||
|
C
|
||
|
C LAST - Integer
|
||
|
C Number of subintervals actually produced in the
|
||
|
C subdivision process
|
||
|
C
|
||
|
C***REFERENCES (NONE)
|
||
|
C***ROUTINES CALLED D1MACH, DQK15, DQK21, DQK31, DQK41, DQK51, DQK61,
|
||
|
C DQPSRT
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 800101 DATE WRITTEN
|
||
|
C 890531 Changed all specific intrinsics to generic. (WRB)
|
||
|
C 890831 Modified array declarations. (WRB)
|
||
|
C 890831 REVISION DATE from Version 3.2
|
||
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C***END PROLOGUE DQAGE
|
||
|
C
|
||
|
DOUBLE PRECISION A,ABSERR,ALIST,AREA,AREA1,AREA12,AREA2,A1,A2,B,
|
||
|
1 BLIST,B1,B2,DEFABS,DEFAB1,DEFAB2,D1MACH,ELIST,EPMACH,
|
||
|
2 EPSABS,EPSREL,ERRBND,ERRMAX,ERROR1,ERROR2,ERRO12,ERRSUM,F,
|
||
|
3 RESABS,RESULT,RLIST,UFLOW
|
||
|
INTEGER IER,IORD,IROFF1,IROFF2,K,KEY,KEYF,LAST,LIMIT,MAXERR,NEVAL,
|
||
|
1 NRMAX
|
||
|
C
|
||
|
DIMENSION ALIST(*),BLIST(*),ELIST(*),IORD(*),
|
||
|
1 RLIST(*)
|
||
|
C
|
||
|
EXTERNAL F
|
||
|
C
|
||
|
C LIST OF MAJOR VARIABLES
|
||
|
C -----------------------
|
||
|
C
|
||
|
C ALIST - LIST OF LEFT END POINTS OF ALL SUBINTERVALS
|
||
|
C CONSIDERED UP TO NOW
|
||
|
C BLIST - LIST OF RIGHT END POINTS OF ALL SUBINTERVALS
|
||
|
C CONSIDERED UP TO NOW
|
||
|
C RLIST(I) - APPROXIMATION TO THE INTEGRAL OVER
|
||
|
C (ALIST(I),BLIST(I))
|
||
|
C ELIST(I) - ERROR ESTIMATE APPLYING TO RLIST(I)
|
||
|
C MAXERR - POINTER TO THE INTERVAL WITH LARGEST
|
||
|
C ERROR ESTIMATE
|
||
|
C ERRMAX - ELIST(MAXERR)
|
||
|
C AREA - SUM OF THE INTEGRALS OVER THE SUBINTERVALS
|
||
|
C ERRSUM - SUM OF THE ERRORS OVER THE SUBINTERVALS
|
||
|
C ERRBND - REQUESTED ACCURACY MAX(EPSABS,EPSREL*
|
||
|
C ABS(RESULT))
|
||
|
C *****1 - VARIABLE FOR THE LEFT SUBINTERVAL
|
||
|
C *****2 - VARIABLE FOR THE RIGHT SUBINTERVAL
|
||
|
C LAST - INDEX FOR SUBDIVISION
|
||
|
C
|
||
|
C
|
||
|
C MACHINE DEPENDENT CONSTANTS
|
||
|
C ---------------------------
|
||
|
C
|
||
|
C EPMACH IS THE LARGEST RELATIVE SPACING.
|
||
|
C UFLOW IS THE SMALLEST POSITIVE MAGNITUDE.
|
||
|
C
|
||
|
C***FIRST EXECUTABLE STATEMENT DQAGE
|
||
|
EPMACH = D1MACH(4)
|
||
|
UFLOW = D1MACH(1)
|
||
|
C
|
||
|
C TEST ON VALIDITY OF PARAMETERS
|
||
|
C ------------------------------
|
||
|
C
|
||
|
IER = 0
|
||
|
NEVAL = 0
|
||
|
LAST = 0
|
||
|
RESULT = 0.0D+00
|
||
|
ABSERR = 0.0D+00
|
||
|
ALIST(1) = A
|
||
|
BLIST(1) = B
|
||
|
RLIST(1) = 0.0D+00
|
||
|
ELIST(1) = 0.0D+00
|
||
|
IORD(1) = 0
|
||
|
IF(EPSABS.LE.0.0D+00.AND.
|
||
|
1 EPSREL.LT.MAX(0.5D+02*EPMACH,0.5D-28)) IER = 6
|
||
|
IF(IER.EQ.6) GO TO 999
|
||
|
C
|
||
|
C FIRST APPROXIMATION TO THE INTEGRAL
|
||
|
C -----------------------------------
|
||
|
C
|
||
|
KEYF = KEY
|
||
|
IF(KEY.LE.0) KEYF = 1
|
||
|
IF(KEY.GE.7) KEYF = 6
|
||
|
NEVAL = 0
|
||
|
IF(KEYF.EQ.1) CALL DQK15(F,A,B,RESULT,ABSERR,DEFABS,RESABS)
|
||
|
IF(KEYF.EQ.2) CALL DQK21(F,A,B,RESULT,ABSERR,DEFABS,RESABS)
|
||
|
IF(KEYF.EQ.3) CALL DQK31(F,A,B,RESULT,ABSERR,DEFABS,RESABS)
|
||
|
IF(KEYF.EQ.4) CALL DQK41(F,A,B,RESULT,ABSERR,DEFABS,RESABS)
|
||
|
IF(KEYF.EQ.5) CALL DQK51(F,A,B,RESULT,ABSERR,DEFABS,RESABS)
|
||
|
IF(KEYF.EQ.6) CALL DQK61(F,A,B,RESULT,ABSERR,DEFABS,RESABS)
|
||
|
LAST = 1
|
||
|
RLIST(1) = RESULT
|
||
|
ELIST(1) = ABSERR
|
||
|
IORD(1) = 1
|
||
|
C
|
||
|
C TEST ON ACCURACY.
|
||
|
C
|
||
|
ERRBND = MAX(EPSABS,EPSREL*ABS(RESULT))
|
||
|
IF(ABSERR.LE.0.5D+02*EPMACH*DEFABS.AND.ABSERR.GT.ERRBND) IER = 2
|
||
|
IF(LIMIT.EQ.1) IER = 1
|
||
|
IF(IER.NE.0.OR.(ABSERR.LE.ERRBND.AND.ABSERR.NE.RESABS)
|
||
|
1 .OR.ABSERR.EQ.0.0D+00) GO TO 60
|
||
|
C
|
||
|
C INITIALIZATION
|
||
|
C --------------
|
||
|
C
|
||
|
C
|
||
|
ERRMAX = ABSERR
|
||
|
MAXERR = 1
|
||
|
AREA = RESULT
|
||
|
ERRSUM = ABSERR
|
||
|
NRMAX = 1
|
||
|
IROFF1 = 0
|
||
|
IROFF2 = 0
|
||
|
C
|
||
|
C MAIN DO-LOOP
|
||
|
C ------------
|
||
|
C
|
||
|
DO 30 LAST = 2,LIMIT
|
||
|
C
|
||
|
C BISECT THE SUBINTERVAL WITH THE LARGEST ERROR ESTIMATE.
|
||
|
C
|
||
|
A1 = ALIST(MAXERR)
|
||
|
B1 = 0.5D+00*(ALIST(MAXERR)+BLIST(MAXERR))
|
||
|
A2 = B1
|
||
|
B2 = BLIST(MAXERR)
|
||
|
IF(KEYF.EQ.1) CALL DQK15(F,A1,B1,AREA1,ERROR1,RESABS,DEFAB1)
|
||
|
IF(KEYF.EQ.2) CALL DQK21(F,A1,B1,AREA1,ERROR1,RESABS,DEFAB1)
|
||
|
IF(KEYF.EQ.3) CALL DQK31(F,A1,B1,AREA1,ERROR1,RESABS,DEFAB1)
|
||
|
IF(KEYF.EQ.4) CALL DQK41(F,A1,B1,AREA1,ERROR1,RESABS,DEFAB1)
|
||
|
IF(KEYF.EQ.5) CALL DQK51(F,A1,B1,AREA1,ERROR1,RESABS,DEFAB1)
|
||
|
IF(KEYF.EQ.6) CALL DQK61(F,A1,B1,AREA1,ERROR1,RESABS,DEFAB1)
|
||
|
IF(KEYF.EQ.1) CALL DQK15(F,A2,B2,AREA2,ERROR2,RESABS,DEFAB2)
|
||
|
IF(KEYF.EQ.2) CALL DQK21(F,A2,B2,AREA2,ERROR2,RESABS,DEFAB2)
|
||
|
IF(KEYF.EQ.3) CALL DQK31(F,A2,B2,AREA2,ERROR2,RESABS,DEFAB2)
|
||
|
IF(KEYF.EQ.4) CALL DQK41(F,A2,B2,AREA2,ERROR2,RESABS,DEFAB2)
|
||
|
IF(KEYF.EQ.5) CALL DQK51(F,A2,B2,AREA2,ERROR2,RESABS,DEFAB2)
|
||
|
IF(KEYF.EQ.6) CALL DQK61(F,A2,B2,AREA2,ERROR2,RESABS,DEFAB2)
|
||
|
C
|
||
|
C IMPROVE PREVIOUS APPROXIMATIONS TO INTEGRAL
|
||
|
C AND ERROR AND TEST FOR ACCURACY.
|
||
|
C
|
||
|
NEVAL = NEVAL+1
|
||
|
AREA12 = AREA1+AREA2
|
||
|
ERRO12 = ERROR1+ERROR2
|
||
|
ERRSUM = ERRSUM+ERRO12-ERRMAX
|
||
|
AREA = AREA+AREA12-RLIST(MAXERR)
|
||
|
IF(DEFAB1.EQ.ERROR1.OR.DEFAB2.EQ.ERROR2) GO TO 5
|
||
|
IF(ABS(RLIST(MAXERR)-AREA12).LE.0.1D-04*ABS(AREA12)
|
||
|
1 .AND.ERRO12.GE.0.99D+00*ERRMAX) IROFF1 = IROFF1+1
|
||
|
IF(LAST.GT.10.AND.ERRO12.GT.ERRMAX) IROFF2 = IROFF2+1
|
||
|
5 RLIST(MAXERR) = AREA1
|
||
|
RLIST(LAST) = AREA2
|
||
|
ERRBND = MAX(EPSABS,EPSREL*ABS(AREA))
|
||
|
IF(ERRSUM.LE.ERRBND) GO TO 8
|
||
|
C
|
||
|
C TEST FOR ROUNDOFF ERROR AND EVENTUALLY SET ERROR FLAG.
|
||
|
C
|
||
|
IF(IROFF1.GE.6.OR.IROFF2.GE.20) IER = 2
|
||
|
C
|
||
|
C SET ERROR FLAG IN THE CASE THAT THE NUMBER OF SUBINTERVALS
|
||
|
C EQUALS LIMIT.
|
||
|
C
|
||
|
IF(LAST.EQ.LIMIT) IER = 1
|
||
|
C
|
||
|
C SET ERROR FLAG IN THE CASE OF BAD INTEGRAND BEHAVIOUR
|
||
|
C AT A POINT OF THE INTEGRATION RANGE.
|
||
|
C
|
||
|
IF(MAX(ABS(A1),ABS(B2)).LE.(0.1D+01+0.1D+03*
|
||
|
1 EPMACH)*(ABS(A2)+0.1D+04*UFLOW)) IER = 3
|
||
|
C
|
||
|
C APPEND THE NEWLY-CREATED INTERVALS TO THE LIST.
|
||
|
C
|
||
|
8 IF(ERROR2.GT.ERROR1) GO TO 10
|
||
|
ALIST(LAST) = A2
|
||
|
BLIST(MAXERR) = B1
|
||
|
BLIST(LAST) = B2
|
||
|
ELIST(MAXERR) = ERROR1
|
||
|
ELIST(LAST) = ERROR2
|
||
|
GO TO 20
|
||
|
10 ALIST(MAXERR) = A2
|
||
|
ALIST(LAST) = A1
|
||
|
BLIST(LAST) = B1
|
||
|
RLIST(MAXERR) = AREA2
|
||
|
RLIST(LAST) = AREA1
|
||
|
ELIST(MAXERR) = ERROR2
|
||
|
ELIST(LAST) = ERROR1
|
||
|
C
|
||
|
C CALL SUBROUTINE DQPSRT TO MAINTAIN THE DESCENDING ORDERING
|
||
|
C IN THE LIST OF ERROR ESTIMATES AND SELECT THE SUBINTERVAL
|
||
|
C WITH THE LARGEST ERROR ESTIMATE (TO BE BISECTED NEXT).
|
||
|
C
|
||
|
20 CALL DQPSRT(LIMIT,LAST,MAXERR,ERRMAX,ELIST,IORD,NRMAX)
|
||
|
C ***JUMP OUT OF DO-LOOP
|
||
|
IF(IER.NE.0.OR.ERRSUM.LE.ERRBND) GO TO 40
|
||
|
30 CONTINUE
|
||
|
C
|
||
|
C COMPUTE FINAL RESULT.
|
||
|
C ---------------------
|
||
|
C
|
||
|
40 RESULT = 0.0D+00
|
||
|
DO 50 K=1,LAST
|
||
|
RESULT = RESULT+RLIST(K)
|
||
|
50 CONTINUE
|
||
|
ABSERR = ERRSUM
|
||
|
60 IF(KEYF.NE.1) NEVAL = (10*KEYF+1)*(2*NEVAL+1)
|
||
|
IF(KEYF.EQ.1) NEVAL = 30*NEVAL+15
|
||
|
999 RETURN
|
||
|
END
|