mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-04 07:53:38 +01:00
562 lines
21 KiB
FortranFixed
562 lines
21 KiB
FortranFixed
|
*DECK DQAGPE
|
||
|
SUBROUTINE DQAGPE (F, A, B, NPTS2, POINTS, EPSABS, EPSREL, LIMIT,
|
||
|
+ RESULT, ABSERR, NEVAL, IER, ALIST, BLIST, RLIST, ELIST, PTS,
|
||
|
+ IORD, LEVEL, NDIN, LAST)
|
||
|
C***BEGIN PROLOGUE DQAGPE
|
||
|
C***PURPOSE Approximate a given definite integral I = Integral of F
|
||
|
C over (A,B), hopefully satisfying the accuracy claim:
|
||
|
C ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I)).
|
||
|
C Break points of the integration interval, where local
|
||
|
C difficulties of the integrand may occur (e.g. singularities
|
||
|
C or discontinuities) are provided by the user.
|
||
|
C***LIBRARY SLATEC (QUADPACK)
|
||
|
C***CATEGORY H2A2A1
|
||
|
C***TYPE DOUBLE PRECISION (QAGPE-S, DQAGPE-D)
|
||
|
C***KEYWORDS AUTOMATIC INTEGRATOR, EXTRAPOLATION, GENERAL-PURPOSE,
|
||
|
C GLOBALLY ADAPTIVE, QUADPACK, QUADRATURE,
|
||
|
C SINGULARITIES AT USER SPECIFIED POINTS
|
||
|
C***AUTHOR Piessens, Robert
|
||
|
C Applied Mathematics and Programming Division
|
||
|
C K. U. Leuven
|
||
|
C de Doncker, Elise
|
||
|
C Applied Mathematics and Programming Division
|
||
|
C K. U. Leuven
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C Computation of a definite integral
|
||
|
C Standard fortran subroutine
|
||
|
C Double precision version
|
||
|
C
|
||
|
C PARAMETERS
|
||
|
C ON ENTRY
|
||
|
C F - Double precision
|
||
|
C Function subprogram defining the integrand
|
||
|
C function F(X). The actual name for F needs to be
|
||
|
C declared E X T E R N A L in the driver program.
|
||
|
C
|
||
|
C A - Double precision
|
||
|
C Lower limit of integration
|
||
|
C
|
||
|
C B - Double precision
|
||
|
C Upper limit of integration
|
||
|
C
|
||
|
C NPTS2 - Integer
|
||
|
C Number equal to two more than the number of
|
||
|
C user-supplied break points within the integration
|
||
|
C range, NPTS2.GE.2.
|
||
|
C If NPTS2.LT.2, the routine will end with IER = 6.
|
||
|
C
|
||
|
C POINTS - Double precision
|
||
|
C Vector of dimension NPTS2, the first (NPTS2-2)
|
||
|
C elements of which are the user provided break
|
||
|
C POINTS. If these POINTS do not constitute an
|
||
|
C ascending sequence there will be an automatic
|
||
|
C sorting.
|
||
|
C
|
||
|
C EPSABS - Double precision
|
||
|
C Absolute accuracy requested
|
||
|
C EPSREL - Double precision
|
||
|
C Relative accuracy requested
|
||
|
C If EPSABS.LE.0
|
||
|
C and EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
|
||
|
C the routine will end with IER = 6.
|
||
|
C
|
||
|
C LIMIT - Integer
|
||
|
C Gives an upper bound on the number of subintervals
|
||
|
C in the partition of (A,B), LIMIT.GE.NPTS2
|
||
|
C If LIMIT.LT.NPTS2, the routine will end with
|
||
|
C IER = 6.
|
||
|
C
|
||
|
C ON RETURN
|
||
|
C RESULT - Double precision
|
||
|
C Approximation to the integral
|
||
|
C
|
||
|
C ABSERR - Double precision
|
||
|
C Estimate of the modulus of the absolute error,
|
||
|
C which should equal or exceed ABS(I-RESULT)
|
||
|
C
|
||
|
C NEVAL - Integer
|
||
|
C Number of integrand evaluations
|
||
|
C
|
||
|
C IER - Integer
|
||
|
C IER = 0 Normal and reliable termination of the
|
||
|
C routine. It is assumed that the requested
|
||
|
C accuracy has been achieved.
|
||
|
C IER.GT.0 Abnormal termination of the routine.
|
||
|
C The estimates for integral and error are
|
||
|
C less reliable. It is assumed that the
|
||
|
C requested accuracy has not been achieved.
|
||
|
C ERROR MESSAGES
|
||
|
C IER = 1 Maximum number of subdivisions allowed
|
||
|
C has been achieved. One can allow more
|
||
|
C subdivisions by increasing the value of
|
||
|
C LIMIT (and taking the according dimension
|
||
|
C adjustments into account). However, if
|
||
|
C this yields no improvement it is advised
|
||
|
C to analyze the integrand in order to
|
||
|
C determine the integration difficulties. If
|
||
|
C the position of a local difficulty can be
|
||
|
C determined (i.e. SINGULARITY,
|
||
|
C DISCONTINUITY within the interval), it
|
||
|
C should be supplied to the routine as an
|
||
|
C element of the vector points. If necessary
|
||
|
C an appropriate special-purpose integrator
|
||
|
C must be used, which is designed for
|
||
|
C handling the type of difficulty involved.
|
||
|
C = 2 The occurrence of roundoff error is
|
||
|
C detected, which prevents the requested
|
||
|
C tolerance from being achieved.
|
||
|
C The error may be under-estimated.
|
||
|
C = 3 Extremely bad integrand behaviour occurs
|
||
|
C At some points of the integration
|
||
|
C interval.
|
||
|
C = 4 The algorithm does not converge.
|
||
|
C Roundoff error is detected in the
|
||
|
C extrapolation table. It is presumed that
|
||
|
C the requested tolerance cannot be
|
||
|
C achieved, and that the returned result is
|
||
|
C the best which can be obtained.
|
||
|
C = 5 The integral is probably divergent, or
|
||
|
C slowly convergent. It must be noted that
|
||
|
C divergence can occur with any other value
|
||
|
C of IER.GT.0.
|
||
|
C = 6 The input is invalid because
|
||
|
C NPTS2.LT.2 or
|
||
|
C Break points are specified outside
|
||
|
C the integration range or
|
||
|
C (EPSABS.LE.0 and
|
||
|
C EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28))
|
||
|
C or LIMIT.LT.NPTS2.
|
||
|
C RESULT, ABSERR, NEVAL, LAST, RLIST(1),
|
||
|
C and ELIST(1) are set to zero. ALIST(1) and
|
||
|
C BLIST(1) are set to A and B respectively.
|
||
|
C
|
||
|
C ALIST - Double precision
|
||
|
C Vector of dimension at least LIMIT, the first
|
||
|
C LAST elements of which are the left end points
|
||
|
C of the subintervals in the partition of the given
|
||
|
C integration range (A,B)
|
||
|
C
|
||
|
C BLIST - Double precision
|
||
|
C Vector of dimension at least LIMIT, the first
|
||
|
C LAST elements of which are the right end points
|
||
|
C of the subintervals in the partition of the given
|
||
|
C integration range (A,B)
|
||
|
C
|
||
|
C RLIST - Double precision
|
||
|
C Vector of dimension at least LIMIT, the first
|
||
|
C LAST elements of which are the integral
|
||
|
C approximations on the subintervals
|
||
|
C
|
||
|
C ELIST - Double precision
|
||
|
C Vector of dimension at least LIMIT, the first
|
||
|
C LAST elements of which are the moduli of the
|
||
|
C absolute error estimates on the subintervals
|
||
|
C
|
||
|
C PTS - Double precision
|
||
|
C Vector of dimension at least NPTS2, containing the
|
||
|
C integration limits and the break points of the
|
||
|
C interval in ascending sequence.
|
||
|
C
|
||
|
C LEVEL - Integer
|
||
|
C Vector of dimension at least LIMIT, containing the
|
||
|
C subdivision levels of the subinterval, i.e. if
|
||
|
C (AA,BB) is a subinterval of (P1,P2) where P1 as
|
||
|
C well as P2 is a user-provided break point or
|
||
|
C integration limit, then (AA,BB) has level L if
|
||
|
C ABS(BB-AA) = ABS(P2-P1)*2**(-L).
|
||
|
C
|
||
|
C NDIN - Integer
|
||
|
C Vector of dimension at least NPTS2, after first
|
||
|
C integration over the intervals (PTS(I)),PTS(I+1),
|
||
|
C I = 0,1, ..., NPTS2-2, the error estimates over
|
||
|
C some of the intervals may have been increased
|
||
|
C artificially, in order to put their subdivision
|
||
|
C forward. If this happens for the subinterval
|
||
|
C numbered K, NDIN(K) is put to 1, otherwise
|
||
|
C NDIN(K) = 0.
|
||
|
C
|
||
|
C IORD - Integer
|
||
|
C Vector of dimension at least LIMIT, the first K
|
||
|
C elements of which are pointers to the
|
||
|
C error estimates over the subintervals,
|
||
|
C such that ELIST(IORD(1)), ..., ELIST(IORD(K))
|
||
|
C form a decreasing sequence, with K = LAST
|
||
|
C If LAST.LE.(LIMIT/2+2), and K = LIMIT+1-LAST
|
||
|
C otherwise
|
||
|
C
|
||
|
C LAST - Integer
|
||
|
C Number of subintervals actually produced in the
|
||
|
C subdivisions process
|
||
|
C
|
||
|
C***REFERENCES (NONE)
|
||
|
C***ROUTINES CALLED D1MACH, DQELG, DQK21, DQPSRT
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 800101 DATE WRITTEN
|
||
|
C 890531 Changed all specific intrinsics to generic. (WRB)
|
||
|
C 890831 Modified array declarations. (WRB)
|
||
|
C 890831 REVISION DATE from Version 3.2
|
||
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C***END PROLOGUE DQAGPE
|
||
|
DOUBLE PRECISION A,ABSEPS,ABSERR,ALIST,AREA,AREA1,AREA12,AREA2,A1,
|
||
|
1 A2,B,BLIST,B1,B2,CORREC,DEFABS,DEFAB1,DEFAB2,
|
||
|
2 DRES,D1MACH,ELIST,EPMACH,EPSABS,EPSREL,ERLARG,ERLAST,ERRBND,
|
||
|
3 ERRMAX,ERROR1,ERRO12,ERROR2,ERRSUM,ERTEST,F,OFLOW,POINTS,PTS,
|
||
|
4 RESA,RESABS,RESEPS,RESULT,RES3LA,RLIST,RLIST2,SIGN,TEMP,UFLOW
|
||
|
INTEGER I,ID,IER,IERRO,IND1,IND2,IORD,IP1,IROFF1,IROFF2,IROFF3,J,
|
||
|
1 JLOW,JUPBND,K,KSGN,KTMIN,LAST,LEVCUR,LEVEL,LEVMAX,LIMIT,MAXERR,
|
||
|
2 NDIN,NEVAL,NINT,NINTP1,NPTS,NPTS2,NRES,NRMAX,NUMRL2
|
||
|
LOGICAL EXTRAP,NOEXT
|
||
|
C
|
||
|
C
|
||
|
DIMENSION ALIST(*),BLIST(*),ELIST(*),IORD(*),
|
||
|
1 LEVEL(*),NDIN(*),POINTS(*),PTS(*),RES3LA(3),
|
||
|
2 RLIST(*),RLIST2(52)
|
||
|
C
|
||
|
EXTERNAL F
|
||
|
C
|
||
|
C THE DIMENSION OF RLIST2 IS DETERMINED BY THE VALUE OF
|
||
|
C LIMEXP IN SUBROUTINE EPSALG (RLIST2 SHOULD BE OF DIMENSION
|
||
|
C (LIMEXP+2) AT LEAST).
|
||
|
C
|
||
|
C
|
||
|
C LIST OF MAJOR VARIABLES
|
||
|
C -----------------------
|
||
|
C
|
||
|
C ALIST - LIST OF LEFT END POINTS OF ALL SUBINTERVALS
|
||
|
C CONSIDERED UP TO NOW
|
||
|
C BLIST - LIST OF RIGHT END POINTS OF ALL SUBINTERVALS
|
||
|
C CONSIDERED UP TO NOW
|
||
|
C RLIST(I) - APPROXIMATION TO THE INTEGRAL OVER
|
||
|
C (ALIST(I),BLIST(I))
|
||
|
C RLIST2 - ARRAY OF DIMENSION AT LEAST LIMEXP+2
|
||
|
C CONTAINING THE PART OF THE EPSILON TABLE WHICH
|
||
|
C IS STILL NEEDED FOR FURTHER COMPUTATIONS
|
||
|
C ELIST(I) - ERROR ESTIMATE APPLYING TO RLIST(I)
|
||
|
C MAXERR - POINTER TO THE INTERVAL WITH LARGEST ERROR
|
||
|
C ESTIMATE
|
||
|
C ERRMAX - ELIST(MAXERR)
|
||
|
C ERLAST - ERROR ON THE INTERVAL CURRENTLY SUBDIVIDED
|
||
|
C (BEFORE THAT SUBDIVISION HAS TAKEN PLACE)
|
||
|
C AREA - SUM OF THE INTEGRALS OVER THE SUBINTERVALS
|
||
|
C ERRSUM - SUM OF THE ERRORS OVER THE SUBINTERVALS
|
||
|
C ERRBND - REQUESTED ACCURACY MAX(EPSABS,EPSREL*
|
||
|
C ABS(RESULT))
|
||
|
C *****1 - VARIABLE FOR THE LEFT SUBINTERVAL
|
||
|
C *****2 - VARIABLE FOR THE RIGHT SUBINTERVAL
|
||
|
C LAST - INDEX FOR SUBDIVISION
|
||
|
C NRES - NUMBER OF CALLS TO THE EXTRAPOLATION ROUTINE
|
||
|
C NUMRL2 - NUMBER OF ELEMENTS IN RLIST2. IF AN APPROPRIATE
|
||
|
C APPROXIMATION TO THE COMPOUNDED INTEGRAL HAS
|
||
|
C BEEN OBTAINED, IT IS PUT IN RLIST2(NUMRL2) AFTER
|
||
|
C NUMRL2 HAS BEEN INCREASED BY ONE.
|
||
|
C ERLARG - SUM OF THE ERRORS OVER THE INTERVALS LARGER
|
||
|
C THAN THE SMALLEST INTERVAL CONSIDERED UP TO NOW
|
||
|
C EXTRAP - LOGICAL VARIABLE DENOTING THAT THE ROUTINE
|
||
|
C IS ATTEMPTING TO PERFORM EXTRAPOLATION. I.E.
|
||
|
C BEFORE SUBDIVIDING THE SMALLEST INTERVAL WE
|
||
|
C TRY TO DECREASE THE VALUE OF ERLARG.
|
||
|
C NOEXT - LOGICAL VARIABLE DENOTING THAT EXTRAPOLATION IS
|
||
|
C NO LONGER ALLOWED (TRUE-VALUE)
|
||
|
C
|
||
|
C MACHINE DEPENDENT CONSTANTS
|
||
|
C ---------------------------
|
||
|
C
|
||
|
C EPMACH IS THE LARGEST RELATIVE SPACING.
|
||
|
C UFLOW IS THE SMALLEST POSITIVE MAGNITUDE.
|
||
|
C OFLOW IS THE LARGEST POSITIVE MAGNITUDE.
|
||
|
C
|
||
|
C***FIRST EXECUTABLE STATEMENT DQAGPE
|
||
|
EPMACH = D1MACH(4)
|
||
|
C
|
||
|
C TEST ON VALIDITY OF PARAMETERS
|
||
|
C -----------------------------
|
||
|
C
|
||
|
IER = 0
|
||
|
NEVAL = 0
|
||
|
LAST = 0
|
||
|
RESULT = 0.0D+00
|
||
|
ABSERR = 0.0D+00
|
||
|
ALIST(1) = A
|
||
|
BLIST(1) = B
|
||
|
RLIST(1) = 0.0D+00
|
||
|
ELIST(1) = 0.0D+00
|
||
|
IORD(1) = 0
|
||
|
LEVEL(1) = 0
|
||
|
NPTS = NPTS2-2
|
||
|
IF(NPTS2.LT.2.OR.LIMIT.LE.NPTS.OR.(EPSABS.LE.0.0D+00.AND.
|
||
|
1 EPSREL.LT.MAX(0.5D+02*EPMACH,0.5D-28))) IER = 6
|
||
|
IF(IER.EQ.6) GO TO 999
|
||
|
C
|
||
|
C IF ANY BREAK POINTS ARE PROVIDED, SORT THEM INTO AN
|
||
|
C ASCENDING SEQUENCE.
|
||
|
C
|
||
|
SIGN = 1.0D+00
|
||
|
IF(A.GT.B) SIGN = -1.0D+00
|
||
|
PTS(1) = MIN(A,B)
|
||
|
IF(NPTS.EQ.0) GO TO 15
|
||
|
DO 10 I = 1,NPTS
|
||
|
PTS(I+1) = POINTS(I)
|
||
|
10 CONTINUE
|
||
|
15 PTS(NPTS+2) = MAX(A,B)
|
||
|
NINT = NPTS+1
|
||
|
A1 = PTS(1)
|
||
|
IF(NPTS.EQ.0) GO TO 40
|
||
|
NINTP1 = NINT+1
|
||
|
DO 20 I = 1,NINT
|
||
|
IP1 = I+1
|
||
|
DO 20 J = IP1,NINTP1
|
||
|
IF(PTS(I).LE.PTS(J)) GO TO 20
|
||
|
TEMP = PTS(I)
|
||
|
PTS(I) = PTS(J)
|
||
|
PTS(J) = TEMP
|
||
|
20 CONTINUE
|
||
|
IF(PTS(1).NE.MIN(A,B).OR.PTS(NINTP1).NE.MAX(A,B)) IER = 6
|
||
|
IF(IER.EQ.6) GO TO 999
|
||
|
C
|
||
|
C COMPUTE FIRST INTEGRAL AND ERROR APPROXIMATIONS.
|
||
|
C ------------------------------------------------
|
||
|
C
|
||
|
40 RESABS = 0.0D+00
|
||
|
DO 50 I = 1,NINT
|
||
|
B1 = PTS(I+1)
|
||
|
CALL DQK21(F,A1,B1,AREA1,ERROR1,DEFABS,RESA)
|
||
|
ABSERR = ABSERR+ERROR1
|
||
|
RESULT = RESULT+AREA1
|
||
|
NDIN(I) = 0
|
||
|
IF(ERROR1.EQ.RESA.AND.ERROR1.NE.0.0D+00) NDIN(I) = 1
|
||
|
RESABS = RESABS+DEFABS
|
||
|
LEVEL(I) = 0
|
||
|
ELIST(I) = ERROR1
|
||
|
ALIST(I) = A1
|
||
|
BLIST(I) = B1
|
||
|
RLIST(I) = AREA1
|
||
|
IORD(I) = I
|
||
|
A1 = B1
|
||
|
50 CONTINUE
|
||
|
ERRSUM = 0.0D+00
|
||
|
DO 55 I = 1,NINT
|
||
|
IF(NDIN(I).EQ.1) ELIST(I) = ABSERR
|
||
|
ERRSUM = ERRSUM+ELIST(I)
|
||
|
55 CONTINUE
|
||
|
C
|
||
|
C TEST ON ACCURACY.
|
||
|
C
|
||
|
LAST = NINT
|
||
|
NEVAL = 21*NINT
|
||
|
DRES = ABS(RESULT)
|
||
|
ERRBND = MAX(EPSABS,EPSREL*DRES)
|
||
|
IF(ABSERR.LE.0.1D+03*EPMACH*RESABS.AND.ABSERR.GT.ERRBND) IER = 2
|
||
|
IF(NINT.EQ.1) GO TO 80
|
||
|
DO 70 I = 1,NPTS
|
||
|
JLOW = I+1
|
||
|
IND1 = IORD(I)
|
||
|
DO 60 J = JLOW,NINT
|
||
|
IND2 = IORD(J)
|
||
|
IF(ELIST(IND1).GT.ELIST(IND2)) GO TO 60
|
||
|
IND1 = IND2
|
||
|
K = J
|
||
|
60 CONTINUE
|
||
|
IF(IND1.EQ.IORD(I)) GO TO 70
|
||
|
IORD(K) = IORD(I)
|
||
|
IORD(I) = IND1
|
||
|
70 CONTINUE
|
||
|
IF(LIMIT.LT.NPTS2) IER = 1
|
||
|
80 IF(IER.NE.0.OR.ABSERR.LE.ERRBND) GO TO 999
|
||
|
C
|
||
|
C INITIALIZATION
|
||
|
C --------------
|
||
|
C
|
||
|
RLIST2(1) = RESULT
|
||
|
MAXERR = IORD(1)
|
||
|
ERRMAX = ELIST(MAXERR)
|
||
|
AREA = RESULT
|
||
|
NRMAX = 1
|
||
|
NRES = 0
|
||
|
NUMRL2 = 1
|
||
|
KTMIN = 0
|
||
|
EXTRAP = .FALSE.
|
||
|
NOEXT = .FALSE.
|
||
|
ERLARG = ERRSUM
|
||
|
ERTEST = ERRBND
|
||
|
LEVMAX = 1
|
||
|
IROFF1 = 0
|
||
|
IROFF2 = 0
|
||
|
IROFF3 = 0
|
||
|
IERRO = 0
|
||
|
UFLOW = D1MACH(1)
|
||
|
OFLOW = D1MACH(2)
|
||
|
ABSERR = OFLOW
|
||
|
KSGN = -1
|
||
|
IF(DRES.GE.(0.1D+01-0.5D+02*EPMACH)*RESABS) KSGN = 1
|
||
|
C
|
||
|
C MAIN DO-LOOP
|
||
|
C ------------
|
||
|
C
|
||
|
DO 160 LAST = NPTS2,LIMIT
|
||
|
C
|
||
|
C BISECT THE SUBINTERVAL WITH THE NRMAX-TH LARGEST ERROR
|
||
|
C ESTIMATE.
|
||
|
C
|
||
|
LEVCUR = LEVEL(MAXERR)+1
|
||
|
A1 = ALIST(MAXERR)
|
||
|
B1 = 0.5D+00*(ALIST(MAXERR)+BLIST(MAXERR))
|
||
|
A2 = B1
|
||
|
B2 = BLIST(MAXERR)
|
||
|
ERLAST = ERRMAX
|
||
|
CALL DQK21(F,A1,B1,AREA1,ERROR1,RESA,DEFAB1)
|
||
|
CALL DQK21(F,A2,B2,AREA2,ERROR2,RESA,DEFAB2)
|
||
|
C
|
||
|
C IMPROVE PREVIOUS APPROXIMATIONS TO INTEGRAL
|
||
|
C AND ERROR AND TEST FOR ACCURACY.
|
||
|
C
|
||
|
NEVAL = NEVAL+42
|
||
|
AREA12 = AREA1+AREA2
|
||
|
ERRO12 = ERROR1+ERROR2
|
||
|
ERRSUM = ERRSUM+ERRO12-ERRMAX
|
||
|
AREA = AREA+AREA12-RLIST(MAXERR)
|
||
|
IF(DEFAB1.EQ.ERROR1.OR.DEFAB2.EQ.ERROR2) GO TO 95
|
||
|
IF(ABS(RLIST(MAXERR)-AREA12).GT.0.1D-04*ABS(AREA12)
|
||
|
1 .OR.ERRO12.LT.0.99D+00*ERRMAX) GO TO 90
|
||
|
IF(EXTRAP) IROFF2 = IROFF2+1
|
||
|
IF(.NOT.EXTRAP) IROFF1 = IROFF1+1
|
||
|
90 IF(LAST.GT.10.AND.ERRO12.GT.ERRMAX) IROFF3 = IROFF3+1
|
||
|
95 LEVEL(MAXERR) = LEVCUR
|
||
|
LEVEL(LAST) = LEVCUR
|
||
|
RLIST(MAXERR) = AREA1
|
||
|
RLIST(LAST) = AREA2
|
||
|
ERRBND = MAX(EPSABS,EPSREL*ABS(AREA))
|
||
|
C
|
||
|
C TEST FOR ROUNDOFF ERROR AND EVENTUALLY SET ERROR FLAG.
|
||
|
C
|
||
|
IF(IROFF1+IROFF2.GE.10.OR.IROFF3.GE.20) IER = 2
|
||
|
IF(IROFF2.GE.5) IERRO = 3
|
||
|
C
|
||
|
C SET ERROR FLAG IN THE CASE THAT THE NUMBER OF
|
||
|
C SUBINTERVALS EQUALS LIMIT.
|
||
|
C
|
||
|
IF(LAST.EQ.LIMIT) IER = 1
|
||
|
C
|
||
|
C SET ERROR FLAG IN THE CASE OF BAD INTEGRAND BEHAVIOUR
|
||
|
C AT A POINT OF THE INTEGRATION RANGE
|
||
|
C
|
||
|
IF(MAX(ABS(A1),ABS(B2)).LE.(0.1D+01+0.1D+03*EPMACH)*
|
||
|
1 (ABS(A2)+0.1D+04*UFLOW)) IER = 4
|
||
|
C
|
||
|
C APPEND THE NEWLY-CREATED INTERVALS TO THE LIST.
|
||
|
C
|
||
|
IF(ERROR2.GT.ERROR1) GO TO 100
|
||
|
ALIST(LAST) = A2
|
||
|
BLIST(MAXERR) = B1
|
||
|
BLIST(LAST) = B2
|
||
|
ELIST(MAXERR) = ERROR1
|
||
|
ELIST(LAST) = ERROR2
|
||
|
GO TO 110
|
||
|
100 ALIST(MAXERR) = A2
|
||
|
ALIST(LAST) = A1
|
||
|
BLIST(LAST) = B1
|
||
|
RLIST(MAXERR) = AREA2
|
||
|
RLIST(LAST) = AREA1
|
||
|
ELIST(MAXERR) = ERROR2
|
||
|
ELIST(LAST) = ERROR1
|
||
|
C
|
||
|
C CALL SUBROUTINE DQPSRT TO MAINTAIN THE DESCENDING ORDERING
|
||
|
C IN THE LIST OF ERROR ESTIMATES AND SELECT THE SUBINTERVAL
|
||
|
C WITH NRMAX-TH LARGEST ERROR ESTIMATE (TO BE BISECTED NEXT).
|
||
|
C
|
||
|
110 CALL DQPSRT(LIMIT,LAST,MAXERR,ERRMAX,ELIST,IORD,NRMAX)
|
||
|
C ***JUMP OUT OF DO-LOOP
|
||
|
IF(ERRSUM.LE.ERRBND) GO TO 190
|
||
|
C ***JUMP OUT OF DO-LOOP
|
||
|
IF(IER.NE.0) GO TO 170
|
||
|
IF(NOEXT) GO TO 160
|
||
|
ERLARG = ERLARG-ERLAST
|
||
|
IF(LEVCUR+1.LE.LEVMAX) ERLARG = ERLARG+ERRO12
|
||
|
IF(EXTRAP) GO TO 120
|
||
|
C
|
||
|
C TEST WHETHER THE INTERVAL TO BE BISECTED NEXT IS THE
|
||
|
C SMALLEST INTERVAL.
|
||
|
C
|
||
|
IF(LEVEL(MAXERR)+1.LE.LEVMAX) GO TO 160
|
||
|
EXTRAP = .TRUE.
|
||
|
NRMAX = 2
|
||
|
120 IF(IERRO.EQ.3.OR.ERLARG.LE.ERTEST) GO TO 140
|
||
|
C
|
||
|
C THE SMALLEST INTERVAL HAS THE LARGEST ERROR.
|
||
|
C BEFORE BISECTING DECREASE THE SUM OF THE ERRORS OVER
|
||
|
C THE LARGER INTERVALS (ERLARG) AND PERFORM EXTRAPOLATION.
|
||
|
C
|
||
|
ID = NRMAX
|
||
|
JUPBND = LAST
|
||
|
IF(LAST.GT.(2+LIMIT/2)) JUPBND = LIMIT+3-LAST
|
||
|
DO 130 K = ID,JUPBND
|
||
|
MAXERR = IORD(NRMAX)
|
||
|
ERRMAX = ELIST(MAXERR)
|
||
|
C ***JUMP OUT OF DO-LOOP
|
||
|
IF(LEVEL(MAXERR)+1.LE.LEVMAX) GO TO 160
|
||
|
NRMAX = NRMAX+1
|
||
|
130 CONTINUE
|
||
|
C
|
||
|
C PERFORM EXTRAPOLATION.
|
||
|
C
|
||
|
140 NUMRL2 = NUMRL2+1
|
||
|
RLIST2(NUMRL2) = AREA
|
||
|
IF(NUMRL2.LE.2) GO TO 155
|
||
|
CALL DQELG(NUMRL2,RLIST2,RESEPS,ABSEPS,RES3LA,NRES)
|
||
|
KTMIN = KTMIN+1
|
||
|
IF(KTMIN.GT.5.AND.ABSERR.LT.0.1D-02*ERRSUM) IER = 5
|
||
|
IF(ABSEPS.GE.ABSERR) GO TO 150
|
||
|
KTMIN = 0
|
||
|
ABSERR = ABSEPS
|
||
|
RESULT = RESEPS
|
||
|
CORREC = ERLARG
|
||
|
ERTEST = MAX(EPSABS,EPSREL*ABS(RESEPS))
|
||
|
C ***JUMP OUT OF DO-LOOP
|
||
|
IF(ABSERR.LT.ERTEST) GO TO 170
|
||
|
C
|
||
|
C PREPARE BISECTION OF THE SMALLEST INTERVAL.
|
||
|
C
|
||
|
150 IF(NUMRL2.EQ.1) NOEXT = .TRUE.
|
||
|
IF(IER.GE.5) GO TO 170
|
||
|
155 MAXERR = IORD(1)
|
||
|
ERRMAX = ELIST(MAXERR)
|
||
|
NRMAX = 1
|
||
|
EXTRAP = .FALSE.
|
||
|
LEVMAX = LEVMAX+1
|
||
|
ERLARG = ERRSUM
|
||
|
160 CONTINUE
|
||
|
C
|
||
|
C SET THE FINAL RESULT.
|
||
|
C ---------------------
|
||
|
C
|
||
|
C
|
||
|
170 IF(ABSERR.EQ.OFLOW) GO TO 190
|
||
|
IF((IER+IERRO).EQ.0) GO TO 180
|
||
|
IF(IERRO.EQ.3) ABSERR = ABSERR+CORREC
|
||
|
IF(IER.EQ.0) IER = 3
|
||
|
IF(RESULT.NE.0.0D+00.AND.AREA.NE.0.0D+00)GO TO 175
|
||
|
IF(ABSERR.GT.ERRSUM)GO TO 190
|
||
|
IF(AREA.EQ.0.0D+00) GO TO 210
|
||
|
GO TO 180
|
||
|
175 IF(ABSERR/ABS(RESULT).GT.ERRSUM/ABS(AREA))GO TO 190
|
||
|
C
|
||
|
C TEST ON DIVERGENCE.
|
||
|
C
|
||
|
180 IF(KSGN.EQ.(-1).AND.MAX(ABS(RESULT),ABS(AREA)).LE.
|
||
|
1 DEFABS*0.1D-01) GO TO 210
|
||
|
IF(0.1D-01.GT.(RESULT/AREA).OR.(RESULT/AREA).GT.0.1D+03.OR.
|
||
|
1 ERRSUM.GT.ABS(AREA)) IER = 6
|
||
|
GO TO 210
|
||
|
C
|
||
|
C COMPUTE GLOBAL INTEGRAL SUM.
|
||
|
C
|
||
|
190 RESULT = 0.0D+00
|
||
|
DO 200 K = 1,LAST
|
||
|
RESULT = RESULT+RLIST(K)
|
||
|
200 CONTINUE
|
||
|
ABSERR = ERRSUM
|
||
|
210 IF(IER.GT.2) IER = IER-1
|
||
|
RESULT = RESULT*SIGN
|
||
|
999 RETURN
|
||
|
END
|