mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-03 23:43:41 +01:00
276 lines
8.4 KiB
FortranFixed
276 lines
8.4 KiB
FortranFixed
|
*DECK DQNC79
|
||
|
SUBROUTINE DQNC79 (FUN, A, B, ERR, ANS, IERR, K)
|
||
|
C***BEGIN PROLOGUE DQNC79
|
||
|
C***PURPOSE Integrate a function using a 7-point adaptive Newton-Cotes
|
||
|
C quadrature rule.
|
||
|
C***LIBRARY SLATEC
|
||
|
C***CATEGORY H2A1A1
|
||
|
C***TYPE DOUBLE PRECISION (QNC79-S, DQNC79-D)
|
||
|
C***KEYWORDS ADAPTIVE QUADRATURE, INTEGRATION, NEWTON-COTES
|
||
|
C***AUTHOR Kahaner, D. K., (NBS)
|
||
|
C Jones, R. E., (SNLA)
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C Abstract *** a DOUBLE PRECISION routine ***
|
||
|
C DQNC79 is a general purpose program for evaluation of
|
||
|
C one dimensional integrals of user defined functions.
|
||
|
C DQNC79 will pick its own points for evaluation of the
|
||
|
C integrand and these will vary from problem to problem.
|
||
|
C Thus, DQNC79 is not designed to integrate over data sets.
|
||
|
C Moderately smooth integrands will be integrated efficiently
|
||
|
C and reliably. For problems with strong singularities,
|
||
|
C oscillations etc., the user may wish to use more sophis-
|
||
|
C ticated routines such as those in QUADPACK. One measure
|
||
|
C of the reliability of DQNC79 is the output parameter K,
|
||
|
C giving the number of integrand evaluations that were needed.
|
||
|
C
|
||
|
C Description of Arguments
|
||
|
C
|
||
|
C --Input--* FUN, A, B, ERR are DOUBLE PRECISION *
|
||
|
C FUN - name of external function to be integrated. This name
|
||
|
C must be in an EXTERNAL statement in your calling
|
||
|
C program. You must write a Fortran function to evaluate
|
||
|
C FUN. This should be of the form
|
||
|
C DOUBLE PRECISION FUNCTION FUN (X)
|
||
|
C C
|
||
|
C C X can vary from A to B
|
||
|
C C FUN(X) should be finite for all X on interval.
|
||
|
C C
|
||
|
C FUN = ...
|
||
|
C RETURN
|
||
|
C END
|
||
|
C A - lower limit of integration
|
||
|
C B - upper limit of integration (may be less than A)
|
||
|
C ERR - is a requested error tolerance. Normally, pick a value
|
||
|
C 0 .LT. ERR .LT. 1.0D-8.
|
||
|
C
|
||
|
C --Output--
|
||
|
C ANS - computed value of the integral. Hopefully, ANS is
|
||
|
C accurate to within ERR * integral of ABS(FUN(X)).
|
||
|
C IERR - a status code
|
||
|
C - Normal codes
|
||
|
C 1 ANS most likely meets requested error tolerance.
|
||
|
C -1 A equals B, or A and B are too nearly equal to
|
||
|
C allow normal integration. ANS is set to zero.
|
||
|
C - Abnormal code
|
||
|
C 2 ANS probably does not meet requested error tolerance.
|
||
|
C K - the number of function evaluations actually used to do
|
||
|
C the integration. A value of K .GT. 1000 indicates a
|
||
|
C difficult problem; other programs may be more efficient.
|
||
|
C DQNC79 will gracefully give up if K exceeds 2000.
|
||
|
C
|
||
|
C***REFERENCES (NONE)
|
||
|
C***ROUTINES CALLED D1MACH, I1MACH, XERMSG
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 790601 DATE WRITTEN
|
||
|
C 890531 Changed all specific intrinsics to generic. (WRB)
|
||
|
C 890911 Removed unnecessary intrinsics. (WRB)
|
||
|
C 890911 REVISION DATE from Version 3.2
|
||
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
|
||
|
C 920218 Code redone to parallel QNC79. (WRB)
|
||
|
C 930120 Increase array size 80->99, and KMX 2000->5000 for SUN -r8
|
||
|
C wordlength. (RWC)
|
||
|
C***END PROLOGUE DQNC79
|
||
|
C .. Scalar Arguments ..
|
||
|
DOUBLE PRECISION A, ANS, B, ERR
|
||
|
INTEGER IERR, K
|
||
|
C .. Function Arguments ..
|
||
|
DOUBLE PRECISION FUN
|
||
|
EXTERNAL FUN
|
||
|
C .. Local Scalars ..
|
||
|
DOUBLE PRECISION AE, AREA, BANK, BLOCAL, C, CE, EE, EF, EPS, Q13,
|
||
|
+ Q7, Q7L, SQ2, TEST, TOL, VR, W1, W2, W3, W4
|
||
|
INTEGER I, KML, KMX, L, LMN, LMX, NBITS, NIB, NLMN, NLMX
|
||
|
LOGICAL FIRST
|
||
|
C .. Local Arrays ..
|
||
|
DOUBLE PRECISION AA(99), F(13), F1(99), F2(99), F3(99), F4(99),
|
||
|
+ F5(99), F6(99), F7(99), HH(99), Q7R(99), VL(99)
|
||
|
INTEGER LR(99)
|
||
|
C .. External Functions ..
|
||
|
DOUBLE PRECISION D1MACH
|
||
|
INTEGER I1MACH
|
||
|
EXTERNAL D1MACH, I1MACH
|
||
|
C .. External Subroutines ..
|
||
|
EXTERNAL XERMSG
|
||
|
C .. Intrinsic Functions ..
|
||
|
INTRINSIC ABS, LOG, MAX, MIN, SIGN, SQRT
|
||
|
C .. Save statement ..
|
||
|
SAVE NBITS, NLMX, FIRST, SQ2, W1, W2, W3, W4
|
||
|
C .. Data statements ..
|
||
|
DATA KML /7/, KMX /5000/, NLMN /2/
|
||
|
DATA FIRST /.TRUE./
|
||
|
C***FIRST EXECUTABLE STATEMENT DQNC79
|
||
|
IF (FIRST) THEN
|
||
|
W1 = 41.0D0/140.0D0
|
||
|
W2 = 216.0D0/140.0D0
|
||
|
W3 = 27.0D0/140.0D0
|
||
|
W4 = 272.0D0/140.0D0
|
||
|
NBITS = D1MACH(5)*I1MACH(14)/0.30102000D0
|
||
|
NLMX = MIN(99,(NBITS*4)/5)
|
||
|
SQ2 = SQRT(2.0D0)
|
||
|
ENDIF
|
||
|
FIRST = .FALSE.
|
||
|
ANS = 0.0D0
|
||
|
IERR = 1
|
||
|
CE = 0.0D0
|
||
|
IF (A .EQ. B) GO TO 260
|
||
|
LMX = NLMX
|
||
|
LMN = NLMN
|
||
|
IF (B .EQ. 0.0D0) GO TO 100
|
||
|
IF (SIGN(1.0D0,B)*A .LE. 0.0D0) GO TO 100
|
||
|
C = ABS(1.0D0-A/B)
|
||
|
IF (C .GT. 0.1D0) GO TO 100
|
||
|
IF (C .LE. 0.0D0) GO TO 260
|
||
|
NIB = 0.5D0 - LOG(C)/LOG(2.0D0)
|
||
|
LMX = MIN(NLMX,NBITS-NIB-4)
|
||
|
IF (LMX .LT. 2) GO TO 260
|
||
|
LMN = MIN(LMN,LMX)
|
||
|
100 TOL = MAX(ABS(ERR),2.0D0**(5-NBITS))
|
||
|
IF (ERR .EQ. 0.0D0) TOL = SQRT(D1MACH(4))
|
||
|
EPS = TOL
|
||
|
HH(1) = (B-A)/12.0D0
|
||
|
AA(1) = A
|
||
|
LR(1) = 1
|
||
|
DO 110 I = 1,11,2
|
||
|
F(I) = FUN(A+(I-1)*HH(1))
|
||
|
110 CONTINUE
|
||
|
BLOCAL = B
|
||
|
F(13) = FUN(BLOCAL)
|
||
|
K = 7
|
||
|
L = 1
|
||
|
AREA = 0.0D0
|
||
|
Q7 = 0.0D0
|
||
|
EF = 256.0D0/255.0D0
|
||
|
BANK = 0.0D0
|
||
|
C
|
||
|
C Compute refined estimates, estimate the error, etc.
|
||
|
C
|
||
|
120 DO 130 I = 2,12,2
|
||
|
F(I) = FUN(AA(L)+(I-1)*HH(L))
|
||
|
130 CONTINUE
|
||
|
K = K + 6
|
||
|
C
|
||
|
C Compute left and right half estimates
|
||
|
C
|
||
|
Q7L = HH(L)*((W1*(F(1)+F(7))+W2*(F(2)+F(6)))+
|
||
|
+ (W3*(F(3)+F(5))+W4*F(4)))
|
||
|
Q7R(L) = HH(L)*((W1*(F(7)+F(13))+W2*(F(8)+F(12)))+
|
||
|
+ (W3*(F(9)+F(11))+W4*F(10)))
|
||
|
C
|
||
|
C Update estimate of integral of absolute value
|
||
|
C
|
||
|
AREA = AREA + (ABS(Q7L)+ABS(Q7R(L))-ABS(Q7))
|
||
|
C
|
||
|
C Do not bother to test convergence before minimum refinement level
|
||
|
C
|
||
|
IF (L .LT. LMN) GO TO 180
|
||
|
C
|
||
|
C Estimate the error in new value for whole interval, Q13
|
||
|
C
|
||
|
Q13 = Q7L + Q7R(L)
|
||
|
EE = ABS(Q7-Q13)*EF
|
||
|
C
|
||
|
C Compute nominal allowed error
|
||
|
C
|
||
|
AE = EPS*AREA
|
||
|
C
|
||
|
C Borrow from bank account, but not too much
|
||
|
C
|
||
|
TEST = MIN(AE+0.8D0*BANK,10.0D0*AE)
|
||
|
C
|
||
|
C Don't ask for excessive accuracy
|
||
|
C
|
||
|
TEST = MAX(TEST,TOL*ABS(Q13),0.00003D0*TOL*AREA)
|
||
|
C
|
||
|
C Now, did this interval pass or not?
|
||
|
C
|
||
|
IF (EE-TEST) 150,150,170
|
||
|
C
|
||
|
C Have hit maximum refinement level -- penalize the cumulative error
|
||
|
C
|
||
|
140 CE = CE + (Q7-Q13)
|
||
|
GO TO 160
|
||
|
C
|
||
|
C On good intervals accumulate the theoretical estimate
|
||
|
C
|
||
|
150 CE = CE + (Q7-Q13)/255.0D0
|
||
|
C
|
||
|
C Update the bank account. Don't go into debt.
|
||
|
C
|
||
|
160 BANK = BANK + (AE-EE)
|
||
|
IF (BANK .LT. 0.0D0) BANK = 0.0D0
|
||
|
C
|
||
|
C Did we just finish a left half or a right half?
|
||
|
C
|
||
|
IF (LR(L)) 190,190,210
|
||
|
C
|
||
|
C Consider the left half of next deeper level
|
||
|
C
|
||
|
170 IF (K .GT. KMX) LMX = MIN(KML,LMX)
|
||
|
IF (L .GE. LMX) GO TO 140
|
||
|
180 L = L + 1
|
||
|
EPS = EPS*0.5D0
|
||
|
IF (L .LE. 17) EF = EF/SQ2
|
||
|
HH(L) = HH(L-1)*0.5D0
|
||
|
LR(L) = -1
|
||
|
AA(L) = AA(L-1)
|
||
|
Q7 = Q7L
|
||
|
F1(L) = F(7)
|
||
|
F2(L) = F(8)
|
||
|
F3(L) = F(9)
|
||
|
F4(L) = F(10)
|
||
|
F5(L) = F(11)
|
||
|
F6(L) = F(12)
|
||
|
F7(L) = F(13)
|
||
|
F(13) = F(7)
|
||
|
F(11) = F(6)
|
||
|
F(9) = F(5)
|
||
|
F(7) = F(4)
|
||
|
F(5) = F(3)
|
||
|
F(3) = F(2)
|
||
|
GO TO 120
|
||
|
C
|
||
|
C Proceed to right half at this level
|
||
|
C
|
||
|
190 VL(L) = Q13
|
||
|
200 Q7 = Q7R(L-1)
|
||
|
LR(L) = 1
|
||
|
AA(L) = AA(L) + 12.0D0*HH(L)
|
||
|
F(1) = F1(L)
|
||
|
F(3) = F2(L)
|
||
|
F(5) = F3(L)
|
||
|
F(7) = F4(L)
|
||
|
F(9) = F5(L)
|
||
|
F(11) = F6(L)
|
||
|
F(13) = F7(L)
|
||
|
GO TO 120
|
||
|
C
|
||
|
C Left and right halves are done, so go back up a level
|
||
|
C
|
||
|
210 VR = Q13
|
||
|
220 IF (L .LE. 1) GO TO 250
|
||
|
IF (L .LE. 17) EF = EF*SQ2
|
||
|
EPS = EPS*2.0D0
|
||
|
L = L - 1
|
||
|
IF (LR(L)) 230,230,240
|
||
|
230 VL(L) = VL(L+1) + VR
|
||
|
GO TO 200
|
||
|
240 VR = VL(L+1) + VR
|
||
|
GO TO 220
|
||
|
C
|
||
|
C Exit
|
||
|
C
|
||
|
250 ANS = VR
|
||
|
IF (ABS(CE) .LE. 2.0D0*TOL*AREA) GO TO 270
|
||
|
IERR = 2
|
||
|
CALL XERMSG ('SLATEC', 'DQNC79',
|
||
|
+ 'ANS is probably insufficiently accurate.', 2, 1)
|
||
|
GO TO 270
|
||
|
260 IERR = -1
|
||
|
CALL XERMSG ('SLATEC', 'DQNC79',
|
||
|
+ 'A and B are too nearly equal to allow normal integration. $$'
|
||
|
+ // 'ANS is set to zero and IERR to -1.', -1, -1)
|
||
|
270 RETURN
|
||
|
END
|