OpenLibm/slatec/drkfs.f

727 lines
31 KiB
FortranFixed
Raw Normal View History

*DECK DRKFS
SUBROUTINE DRKFS (DF, NEQ, T, Y, TOUT, INFO, RTOL, ATOL, IDID, H,
+ TOLFAC, YP, F1, F2, F3, F4, F5, YS, TOLD, DTSIGN, U26, RER,
+ INIT, KSTEPS, KOP, IQUIT, STIFF, NONSTF, NTSTEP, NSTIFS, RPAR,
+ IPAR)
C***BEGIN PROLOGUE DRKFS
C***SUBSIDIARY
C***PURPOSE Subsidiary to DDERKF
C***LIBRARY SLATEC
C***TYPE DOUBLE PRECISION (DERKFS-S, DRKFS-D)
C***AUTHOR Watts, H. A., (SNLA)
C***DESCRIPTION
C
C Fehlberg Fourth-Fifth Order Runge-Kutta Method
C **********************************************************************
C
C DRKFS integrates a system of first order ordinary differential
C equations as described in the comments for DDERKF .
C
C The arrays YP,F1,F2,F3,F4,F5,and YS (of length at least NEQ)
C appear in the call list for variable dimensioning purposes.
C
C The variables H,TOLFAC,TOLD,DTSIGN,U26,RER,INIT,KSTEPS,KOP,IQUIT,
C STIFF,NONSTF,NTSTEP, and NSTIFS are used internally by the code
C and appear in the call list to eliminate local retention of
C variables between calls. Accordingly, these variables and the
C array YP should not be altered.
C Items of possible interest are
C H - An appropriate step size to be used for the next step
C TOLFAC - Factor of change in the tolerances
C YP - Derivative of solution vector at T
C KSTEPS - Counter on the number of steps attempted
C
C **********************************************************************
C
C***SEE ALSO DDERKF
C***ROUTINES CALLED D1MACH, DFEHL, DHSTRT, DHVNRM, XERMSG
C***REVISION HISTORY (YYMMDD)
C 820301 DATE WRITTEN
C 890531 Changed all specific intrinsics to generic. (WRB)
C 890831 Modified array declarations. (WRB)
C 891024 Changed references from DVNORM to DHVNRM. (WRB)
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900328 Added TYPE section. (WRB)
C 900510 Convert XERRWV calls to XERMSG calls, change GOTOs to
C IF-THEN-ELSEs. (RWC)
C 910722 Updated AUTHOR section. (ALS)
C***END PROLOGUE DRKFS
C
INTEGER IDID, INFO, INIT, IPAR, IQUIT, K, KOP, KSTEPS, KTOL,
1 MXKOP, MXSTEP, NATOLP, NEQ, NRTOLP, NSTIFS, NTSTEP
DOUBLE PRECISION A, ATOL, BIG, D1MACH,
1 DT, DTSIGN, DHVNRM, DY, EE, EEOET, ES, ESTIFF,
2 ESTTOL, ET, F1, F2, F3, F4, F5, H, HMIN, REMIN, RER, RPAR,
3 RTOL, S, T, TOL, TOLD, TOLFAC, TOUT, U, U26, UTE, Y, YAVG,
4 YP, YS
LOGICAL HFAILD,OUTPUT,STIFF,NONSTF
CHARACTER*8 XERN1
CHARACTER*16 XERN3, XERN4
C
DIMENSION Y(*),YP(*),F1(*),F2(*),F3(*),F4(*),F5(*),
1 YS(*),INFO(15),RTOL(*),ATOL(*),RPAR(*),IPAR(*)
C
EXTERNAL DF
C
C ..................................................................
C
C A FIFTH ORDER METHOD WILL GENERALLY NOT BE CAPABLE OF DELIVERING
C ACCURACIES NEAR LIMITING PRECISION ON COMPUTERS WITH LONG
C WORDLENGTHS. TO PROTECT AGAINST LIMITING PRECISION DIFFICULTIES
C ARISING FROM UNREASONABLE ACCURACY REQUESTS, AN APPROPRIATE
C TOLERANCE THRESHOLD REMIN IS ASSIGNED FOR THIS METHOD. THIS
C VALUE SHOULD NOT BE CHANGED ACROSS DIFFERENT MACHINES.
C
SAVE REMIN, MXSTEP, MXKOP
DATA REMIN /1.0D-12/
C
C ..................................................................
C
C THE EXPENSE OF SOLVING THE PROBLEM IS MONITORED BY COUNTING THE
C NUMBER OF STEPS ATTEMPTED. WHEN THIS EXCEEDS MXSTEP, THE
C COUNTER IS RESET TO ZERO AND THE USER IS INFORMED ABOUT POSSIBLE
C EXCESSIVE WORK.
C
DATA MXSTEP /500/
C
C ..................................................................
C
C INEFFICIENCY CAUSED BY TOO FREQUENT OUTPUT IS MONITORED BY
C COUNTING THE NUMBER OF STEP SIZES WHICH ARE SEVERELY SHORTENED
C DUE SOLELY TO THE CHOICE OF OUTPUT POINTS. WHEN THE NUMBER OF
C ABUSES EXCEED MXKOP, THE COUNTER IS RESET TO ZERO AND THE USER
C IS INFORMED ABOUT POSSIBLE MISUSE OF THE CODE.
C
DATA MXKOP /100/
C
C ..................................................................
C
C***FIRST EXECUTABLE STATEMENT DRKFS
IF (INFO(1) .EQ. 0) THEN
C
C ON THE FIRST CALL , PERFORM INITIALIZATION --
C DEFINE THE MACHINE UNIT ROUNDOFF QUANTITY U BY CALLING THE
C FUNCTION ROUTINE D1MACH. THE USER MUST MAKE SURE THAT THE
C VALUES SET IN D1MACH ARE RELEVANT TO THE COMPUTER BEING USED.
C
U = D1MACH(4)
C -- SET ASSOCIATED MACHINE DEPENDENT PARAMETERS
U26 = 26.0D0*U
RER = 2.0D0*U + REMIN
C -- SET TERMINATION FLAG
IQUIT = 0
C -- SET INITIALIZATION INDICATOR
INIT = 0
C -- SET COUNTER FOR IMPACT OF OUTPUT POINTS
KOP = 0
C -- SET COUNTER FOR ATTEMPTED STEPS
KSTEPS = 0
C -- SET INDICATORS FOR STIFFNESS DETECTION
STIFF = .FALSE.
NONSTF = .FALSE.
C -- SET STEP COUNTERS FOR STIFFNESS DETECTION
NTSTEP = 0
NSTIFS = 0
C -- RESET INFO(1) FOR SUBSEQUENT CALLS
INFO(1) = 1
ENDIF
C
C.......................................................................
C
C CHECK VALIDITY OF INPUT PARAMETERS ON EACH ENTRY
C
IF (INFO(1) .NE. 0 .AND. INFO(1) .NE. 1) THEN
WRITE (XERN1, '(I8)') INFO(1)
CALL XERMSG ('SLATEC', 'DRKFS',
* 'IN DDERKF, INFO(1) MUST BE SET TO 0 ' //
* 'FOR THE START OF A NEW PROBLEM, AND MUST BE SET TO 1 ' //
* 'FOLLOWING AN INTERRUPTED TASK. YOU ARE ATTEMPTING TO ' //
* 'CONTINUE THE INTEGRATION ILLEGALLY BY CALLING THE CODE ' //
* 'WITH INFO(1) = ' // XERN1, 3, 1)
IDID = -33
ENDIF
C
IF (INFO(2) .NE. 0 .AND. INFO(2) .NE. 1) THEN
WRITE (XERN1, '(I8)') INFO(2)
CALL XERMSG ('SLATEC', 'DRKFS',
* 'IN DDERKF, INFO(2) MUST BE 0 OR 1 ' //
* 'INDICATING SCALAR AND VECTOR ERROR TOLERANCES, ' //
* 'RESPECTIVELY. YOU HAVE CALLED THE CODE WITH INFO(2) = ' //
* XERN1, 4, 1)
IDID = -33
ENDIF
C
IF (INFO(3) .NE. 0 .AND. INFO(3) .NE. 1) THEN
WRITE (XERN1, '(I8)') INFO(3)
CALL XERMSG ('SLATEC', 'DRKFS',
* 'IN DDERKF, INFO(3) MUST BE 0 OR 1 ' //
* 'INDICATING THE INTERVAL OR INTERMEDIATE-OUTPUT MODE OF ' //
* 'INTEGRATION, RESPECTIVELY. YOU HAVE CALLED THE CODE ' //
* 'WITH INFO(3) = ' // XERN1, 5, 1)
IDID = -33
ENDIF
C
IF (NEQ .LT. 1) THEN
WRITE (XERN1, '(I8)') NEQ
CALL XERMSG ('SLATEC', 'DRKFS',
* 'IN DDERKF, THE NUMBER OF EQUATIONS ' //
* 'NEQ MUST BE A POSITIVE INTEGER. YOU HAVE CALLED THE ' //
* 'CODE WITH NEQ = ' // XERN1, 6, 1)
IDID = -33
ENDIF
C
NRTOLP = 0
NATOLP = 0
DO 10 K=1,NEQ
IF (NRTOLP .EQ. 0 .AND. RTOL(K) .LT. 0.D0) THEN
WRITE (XERN1, '(I8)') K
WRITE (XERN3, '(1PE15.6)') RTOL(K)
CALL XERMSG ('SLATEC', 'DRKFS',
* 'IN DDERKF, THE RELATIVE ERROR ' //
* 'TOLERANCES RTOL MUST BE NON-NEGATIVE. YOU HAVE ' //
* 'CALLED THE CODE WITH RTOL(' // XERN1 // ') = ' //
* XERN3 // '. IN THE CASE OF VECTOR ERROR TOLERANCES, ' //
* 'NO FURTHER CHECKING OF RTOL COMPONENTS IS DONE.', 7, 1)
IDID = -33
NRTOLP = 1
ENDIF
C
IF (NATOLP .EQ. 0 .AND. ATOL(K) .LT. 0.D0) THEN
WRITE (XERN1, '(I8)') K
WRITE (XERN3, '(1PE15.6)') ATOL(K)
CALL XERMSG ('SLATEC', 'DRKFS',
* 'IN DDERKF, THE ABSOLUTE ERROR ' //
* 'TOLERANCES ATOL MUST BE NON-NEGATIVE. YOU HAVE ' //
* 'CALLED THE CODE WITH ATOL(' // XERN1 // ') = ' //
* XERN3 // '. IN THE CASE OF VECTOR ERROR TOLERANCES, ' //
* 'NO FURTHER CHECKING OF ATOL COMPONENTS IS DONE.', 8, 1)
IDID = -33
NATOLP = 1
ENDIF
C
IF (INFO(2) .EQ. 0) GO TO 20
IF (NATOLP.GT.0 .AND. NRTOLP.GT.0) GO TO 20
10 CONTINUE
C
C
C CHECK SOME CONTINUATION POSSIBILITIES
C
20 IF (INIT .NE. 0) THEN
IF (T .EQ. TOUT) THEN
WRITE (XERN3, '(1PE15.6)') T
CALL XERMSG ('SLATEC', 'DRKFS',
* 'IN DDERKF, YOU HAVE CALLED THE ' //
* 'CODE WITH T = TOUT = ' // XERN3 // '$$THIS IS NOT ' //
* 'ALLOWED ON CONTINUATION CALLS.', 9, 1)
IDID=-33
ENDIF
C
IF (T .NE. TOLD) THEN
WRITE (XERN3, '(1PE15.6)') TOLD
WRITE (XERN4, '(1PE15.6)') T
CALL XERMSG ('SLATEC', 'DRKFS',
* 'IN DDERKF, YOU HAVE CHANGED THE ' //
* 'VALUE OF T FROM ' // XERN3 // ' TO ' // XERN4 //
* '$$THIS IS NOT ALLOWED ON CONTINUATION CALLS.', 10, 1)
IDID=-33
ENDIF
C
IF (INIT .NE. 1) THEN
IF (DTSIGN*(TOUT-T) .LT. 0.D0) THEN
WRITE (XERN3, '(1PE15.6)') TOUT
CALL XERMSG ('SLATEC', 'DRKFS',
* 'IN DDERKF, BY CALLING THE CODE WITH TOUT = ' //
* XERN3 // ' YOU ARE ATTEMPTING TO CHANGE THE ' //
* 'DIRECTION OF INTEGRATION.$$THIS IS NOT ALLOWED ' //
* 'WITHOUT RESTARTING.', 11, 1)
IDID=-33
ENDIF
ENDIF
ENDIF
C
C INVALID INPUT DETECTED
C
IF (IDID .EQ. (-33)) THEN
IF (IQUIT .NE. (-33)) THEN
IQUIT = -33
GOTO 540
ELSE
CALL XERMSG ('SLATEC', 'DRKFS',
* 'IN DDERKF, INVALID INPUT WAS ' //
* 'DETECTED ON SUCCESSIVE ENTRIES. IT IS IMPOSSIBLE ' //
* 'TO PROCEED BECAUSE YOU HAVE NOT CORRECTED THE ' //
* 'PROBLEM, SO EXECUTION IS BEING TERMINATED.', 12, 2)
RETURN
ENDIF
ENDIF
C
C ............................................................
C
C RTOL = ATOL = 0. IS ALLOWED AS VALID INPUT AND
C INTERPRETED AS ASKING FOR THE MOST ACCURATE SOLUTION
C POSSIBLE. IN THIS CASE, THE RELATIVE ERROR TOLERANCE
C RTOL IS RESET TO THE SMALLEST VALUE RER WHICH IS LIKELY
C TO BE REASONABLE FOR THIS METHOD AND MACHINE.
C
DO 190 K = 1, NEQ
IF (RTOL(K) + ATOL(K) .GT. 0.0D0) GO TO 180
RTOL(K) = RER
IDID = -2
180 CONTINUE
C ...EXIT
IF (INFO(2) .EQ. 0) GO TO 200
190 CONTINUE
200 CONTINUE
C
IF (IDID .NE. (-2)) GO TO 210
C
C RTOL=ATOL=0 ON INPUT, SO RTOL WAS CHANGED TO A
C SMALL POSITIVE VALUE
TOLFAC = 1.0D0
GO TO 530
210 CONTINUE
C
C BRANCH ON STATUS OF INITIALIZATION INDICATOR
C INIT=0 MEANS INITIAL DERIVATIVES AND
C STARTING STEP SIZE
C NOT YET COMPUTED
C INIT=1 MEANS STARTING STEP SIZE NOT YET
C COMPUTED INIT=2 MEANS NO FURTHER
C INITIALIZATION REQUIRED
C
IF (INIT .EQ. 0) GO TO 220
C ......EXIT
IF (INIT .EQ. 1) GO TO 240
C .........EXIT
GO TO 260
220 CONTINUE
C
C ................................................
C
C MORE INITIALIZATION --
C -- EVALUATE INITIAL
C DERIVATIVES
C
INIT = 1
A = T
CALL DF(A,Y,YP,RPAR,IPAR)
IF (T .NE. TOUT) GO TO 230
C
C INTERVAL MODE
IDID = 2
T = TOUT
TOLD = T
C .....................EXIT
GO TO 560
230 CONTINUE
240 CONTINUE
C
C -- SET SIGN OF INTEGRATION DIRECTION AND
C -- ESTIMATE STARTING STEP SIZE
C
INIT = 2
DTSIGN = SIGN(1.0D0,TOUT-T)
U = D1MACH(4)
BIG = SQRT(D1MACH(2))
UTE = U**0.375D0
DY = UTE*DHVNRM(Y,NEQ)
IF (DY .EQ. 0.0D0) DY = UTE
KTOL = 1
DO 250 K = 1, NEQ
IF (INFO(2) .EQ. 1) KTOL = K
TOL = RTOL(KTOL)*ABS(Y(K)) + ATOL(KTOL)
IF (TOL .EQ. 0.0D0) TOL = DY*RTOL(KTOL)
F1(K) = TOL
250 CONTINUE
C
CALL DHSTRT(DF,NEQ,T,TOUT,Y,YP,F1,4,U,BIG,F2,F3,F4,
1 F5,RPAR,IPAR,H)
260 CONTINUE
C
C ......................................................
C
C SET STEP SIZE FOR INTEGRATION IN THE DIRECTION
C FROM T TO TOUT AND SET OUTPUT POINT INDICATOR
C
DT = TOUT - T
H = SIGN(H,DT)
OUTPUT = .FALSE.
C
C TEST TO SEE IF DDERKF IS BEING SEVERELY IMPACTED BY
C TOO MANY OUTPUT POINTS
C
IF (ABS(H) .GE. 2.0D0*ABS(DT)) KOP = KOP + 1
IF (KOP .LE. MXKOP) GO TO 270
C
C UNNECESSARY FREQUENCY OF OUTPUT IS RESTRICTING
C THE STEP SIZE CHOICE
IDID = -5
KOP = 0
GO TO 510
270 CONTINUE
C
IF (ABS(DT) .GT. U26*ABS(T)) GO TO 290
C
C IF TOO CLOSE TO OUTPUT POINT,EXTRAPOLATE AND
C RETURN
C
DO 280 K = 1, NEQ
Y(K) = Y(K) + DT*YP(K)
280 CONTINUE
A = TOUT
CALL DF(A,Y,YP,RPAR,IPAR)
KSTEPS = KSTEPS + 1
GO TO 500
290 CONTINUE
C BEGIN BLOCK PERMITTING ...EXITS TO 490
C
C *********************************************
C *********************************************
C STEP BY STEP INTEGRATION
C
300 CONTINUE
C BEGIN BLOCK PERMITTING ...EXITS TO 480
HFAILD = .FALSE.
C
C TO PROTECT AGAINST IMPOSSIBLE ACCURACY
C REQUESTS, COMPUTE A TOLERANCE FACTOR
C BASED ON THE REQUESTED ERROR TOLERANCE
C AND A LEVEL OF ACCURACY ACHIEVABLE AT
C LIMITING PRECISION
C
TOLFAC = 0.0D0
KTOL = 1
DO 330 K = 1, NEQ
IF (INFO(2) .EQ. 1) KTOL = K
ET = RTOL(KTOL)*ABS(Y(K))
1 + ATOL(KTOL)
IF (ET .GT. 0.0D0) GO TO 310
TOLFAC = MAX(TOLFAC,
1 RER/RTOL(KTOL))
GO TO 320
310 CONTINUE
TOLFAC = MAX(TOLFAC,
1 ABS(Y(K))
2 *(RER/ET))
320 CONTINUE
330 CONTINUE
IF (TOLFAC .LE. 1.0D0) GO TO 340
C
C REQUESTED ERROR UNATTAINABLE DUE TO LIMITED
C PRECISION AVAILABLE
TOLFAC = 2.0D0*TOLFAC
IDID = -2
C .....................EXIT
GO TO 520
340 CONTINUE
C
C SET SMALLEST ALLOWABLE STEP SIZE
C
HMIN = U26*ABS(T)
C
C ADJUST STEP SIZE IF NECESSARY TO HIT
C THE OUTPUT POINT -- LOOK AHEAD TWO
C STEPS TO AVOID DRASTIC CHANGES IN THE
C STEP SIZE AND THUS LESSEN THE IMPACT OF
C OUTPUT POINTS ON THE CODE. STRETCH THE
C STEP SIZE BY, AT MOST, AN AMOUNT EQUAL
C TO THE SAFETY FACTOR OF 9/10.
C
DT = TOUT - T
IF (ABS(DT) .GE. 2.0D0*ABS(H))
1 GO TO 370
IF (ABS(DT) .GT. ABS(H)/0.9D0)
1 GO TO 350
C
C THE NEXT STEP, IF SUCCESSFUL,
C WILL COMPLETE THE INTEGRATION TO
C THE OUTPUT POINT
C
OUTPUT = .TRUE.
H = DT
GO TO 360
350 CONTINUE
C
H = 0.5D0*DT
360 CONTINUE
370 CONTINUE
C
C
C ***************************************
C CORE INTEGRATOR FOR TAKING A
C SINGLE STEP
C ***************************************
C TO AVOID PROBLEMS WITH ZERO
C CROSSINGS, RELATIVE ERROR IS
C MEASURED USING THE AVERAGE OF THE
C MAGNITUDES OF THE SOLUTION AT THE
C BEGINNING AND END OF A STEP.
C THE ERROR ESTIMATE FORMULA HAS
C BEEN GROUPED TO CONTROL LOSS OF
C SIGNIFICANCE.
C LOCAL ERROR ESTIMATES FOR A FIRST
C ORDER METHOD USING THE SAME
C STEP SIZE AS THE FEHLBERG METHOD
C ARE CALCULATED AS PART OF THE
C TEST FOR STIFFNESS.
C TO DISTINGUISH THE VARIOUS
C ARGUMENTS, H IS NOT PERMITTED
C TO BECOME SMALLER THAN 26 UNITS OF
C ROUNDOFF IN T. PRACTICAL LIMITS
C ON THE CHANGE IN THE STEP SIZE ARE
C ENFORCED TO SMOOTH THE STEP SIZE
C SELECTION PROCESS AND TO AVOID
C EXCESSIVE CHATTERING ON PROBLEMS
C HAVING DISCONTINUITIES. TO
C PREVENT UNNECESSARY FAILURES, THE
C CODE USES 9/10 THE STEP SIZE
C IT ESTIMATES WILL SUCCEED.
C AFTER A STEP FAILURE, THE STEP
C SIZE IS NOT ALLOWED TO INCREASE
C FOR THE NEXT ATTEMPTED STEP. THIS
C MAKES THE CODE MORE EFFICIENT ON
C PROBLEMS HAVING DISCONTINUITIES
C AND MORE EFFECTIVE IN GENERAL
C SINCE LOCAL EXTRAPOLATION IS BEING
C USED AND EXTRA CAUTION SEEMS
C WARRANTED.
C .......................................
C
C MONITOR NUMBER OF STEPS ATTEMPTED
C
380 CONTINUE
IF (KSTEPS .LE. MXSTEP) GO TO 390
C
C A SIGNIFICANT AMOUNT OF WORK HAS
C BEEN EXPENDED
IDID = -1
KSTEPS = 0
C ........................EXIT
IF (.NOT.STIFF) GO TO 520
C
C PROBLEM APPEARS TO BE STIFF
IDID = -4
STIFF = .FALSE.
NONSTF = .FALSE.
NTSTEP = 0
NSTIFS = 0
C ........................EXIT
GO TO 520
390 CONTINUE
C
C ADVANCE AN APPROXIMATE SOLUTION OVER
C ONE STEP OF LENGTH H
C
CALL DFEHL(DF,NEQ,T,Y,H,YP,F1,F2,F3,
1 F4,F5,YS,RPAR,IPAR)
KSTEPS = KSTEPS + 1
C
C ....................................
C
C COMPUTE AND TEST ALLOWABLE
C TOLERANCES VERSUS LOCAL ERROR
C ESTIMATES. NOTE THAT RELATIVE
C ERROR IS MEASURED WITH RESPECT
C TO THE AVERAGE OF THE
C MAGNITUDES OF THE SOLUTION AT
C THE BEGINNING AND END OF THE
C STEP. LOCAL ERROR ESTIMATES
C FOR A SPECIAL FIRST ORDER
C METHOD ARE CALCULATED ONLY WHEN
C THE STIFFNESS DETECTION IS
C TURNED ON.
C
EEOET = 0.0D0
ESTIFF = 0.0D0
KTOL = 1
DO 420 K = 1, NEQ
YAVG = 0.5D0
1 *(ABS(Y(K))
2 + ABS(YS(K)))
IF (INFO(2) .EQ. 1) KTOL = K
ET = RTOL(KTOL)*YAVG + ATOL(KTOL)
IF (ET .GT. 0.0D0) GO TO 400
C
C PURE RELATIVE ERROR INAPPROPRIATE WHEN SOLUTION
C VANISHES
IDID = -3
C ...........................EXIT
GO TO 520
400 CONTINUE
C
EE = ABS((-2090.0D0*YP(K)
1 +(21970.0D0*F3(K)
2 -15048.0D0*F4(K)))
3 +(22528.0D0*F2(K)
4 -27360.0D0*F5(K)))
IF (STIFF .OR. NONSTF) GO TO 410
ES = ABS(H
1 *(0.055455D0*YP(K)
2 -0.035493D0*F1(K)
3 -0.036571D0*F2(K)
4 +0.023107D0*F3(K)
5 -0.009515D0*F4(K)
6 +0.003017D0*F5(K))
7 )
ESTIFF = MAX(ESTIFF,ES/ET)
410 CONTINUE
EEOET = MAX(EEOET,EE/ET)
420 CONTINUE
C
ESTTOL = ABS(H)*EEOET/752400.0D0
C
C ...EXIT
IF (ESTTOL .LE. 1.0D0) GO TO 440
C
C ....................................
C
C UNSUCCESSFUL STEP
C
IF (ABS(H) .GT. HMIN) GO TO 430
C
C REQUESTED ERROR UNATTAINABLE AT SMALLEST
C ALLOWABLE STEP SIZE
TOLFAC = 1.69D0*ESTTOL
IDID = -2
C ........................EXIT
GO TO 520
430 CONTINUE
C
C REDUCE THE STEP SIZE , TRY AGAIN
C THE DECREASE IS LIMITED TO A FACTOR
C OF 1/10
C
HFAILD = .TRUE.
OUTPUT = .FALSE.
S = 0.1D0
IF (ESTTOL .LT. 59049.0D0)
1 S = 0.9D0/ESTTOL**0.2D0
H = SIGN(MAX(S*ABS(H),HMIN),H)
GO TO 380
440 CONTINUE
C
C .......................................
C
C SUCCESSFUL STEP
C STORE SOLUTION AT T+H
C AND EVALUATE
C DERIVATIVES THERE
C
T = T + H
DO 450 K = 1, NEQ
Y(K) = YS(K)
450 CONTINUE
A = T
CALL DF(A,Y,YP,RPAR,IPAR)
C
C CHOOSE NEXT STEP SIZE
C THE INCREASE IS LIMITED TO A FACTOR OF
C 5 IF STEP FAILURE HAS JUST OCCURRED,
C NEXT
C STEP SIZE IS NOT ALLOWED TO INCREASE
C
S = 5.0D0
IF (ESTTOL .GT. 1.889568D-4)
1 S = 0.9D0/ESTTOL**0.2D0
IF (HFAILD) S = MIN(S,1.0D0)
H = SIGN(MAX(S*ABS(H),HMIN),H)
C
C .......................................
C
C CHECK FOR STIFFNESS (IF NOT
C ALREADY DETECTED)
C
C IN A SEQUENCE OF 50 SUCCESSFUL
C STEPS BY THE FEHLBERG METHOD, 25
C SUCCESSFUL STEPS BY THE FIRST
C ORDER METHOD INDICATES STIFFNESS
C AND TURNS THE TEST OFF. IF 26
C FAILURES BY THE FIRST ORDER METHOD
C OCCUR, THE TEST IS TURNED OFF
C UNTIL THIS SEQUENCE OF 50 STEPS BY
C THE FEHLBERG METHOD IS COMPLETED.
C
C ...EXIT
IF (STIFF) GO TO 480
NTSTEP = MOD(NTSTEP+1,50)
IF (NTSTEP .EQ. 1) NONSTF = .FALSE.
C ...EXIT
IF (NONSTF) GO TO 480
IF (ESTIFF .GT. 1.0D0) GO TO 460
C
C SUCCESSFUL STEP WITH FIRST ORDER
C METHOD
NSTIFS = NSTIFS + 1
C TURN TEST OFF AFTER 25 INDICATIONS
C OF STIFFNESS
IF (NSTIFS .EQ. 25) STIFF = .TRUE.
GO TO 470
460 CONTINUE
C
C UNSUCCESSFUL STEP WITH FIRST ORDER
C METHOD
IF (NTSTEP - NSTIFS .LE. 25) GO TO 470
C TURN STIFFNESS DETECTION OFF FOR THIS BLOCK OF
C FIFTY STEPS
NONSTF = .TRUE.
C RESET STIFF STEP COUNTER
NSTIFS = 0
470 CONTINUE
480 CONTINUE
C
C ******************************************
C END OF CORE INTEGRATOR
C ******************************************
C
C
C SHOULD WE TAKE ANOTHER STEP
C
C ......EXIT
IF (OUTPUT) GO TO 490
IF (INFO(3) .EQ. 0) GO TO 300
C
C *********************************************
C *********************************************
C
C INTEGRATION SUCCESSFULLY COMPLETED
C
C ONE-STEP MODE
IDID = 1
TOLD = T
C .....................EXIT
GO TO 560
490 CONTINUE
500 CONTINUE
C
C INTERVAL MODE
IDID = 2
T = TOUT
TOLD = T
C ...............EXIT
GO TO 560
510 CONTINUE
520 CONTINUE
530 CONTINUE
540 CONTINUE
C
C INTEGRATION TASK INTERRUPTED
C
INFO(1) = -1
TOLD = T
C ...EXIT
IF (IDID .NE. (-2)) GO TO 560
C
C THE ERROR TOLERANCES ARE INCREASED TO VALUES
C WHICH ARE APPROPRIATE FOR CONTINUING
RTOL(1) = TOLFAC*RTOL(1)
ATOL(1) = TOLFAC*ATOL(1)
C ...EXIT
IF (INFO(2) .EQ. 0) GO TO 560
DO 550 K = 2, NEQ
RTOL(K) = TOLFAC*RTOL(K)
ATOL(K) = TOLFAC*ATOL(K)
550 CONTINUE
560 CONTINUE
RETURN
END