mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-03 23:43:41 +01:00
311 lines
10 KiB
FortranFixed
311 lines
10 KiB
FortranFixed
|
*DECK DSBMV
|
||
|
SUBROUTINE DSBMV (UPLO, N, K, ALPHA, A, LDA, X, INCX, BETA, Y,
|
||
|
$ INCY)
|
||
|
C***BEGIN PROLOGUE DSBMV
|
||
|
C***PURPOSE Perform the matrix-vector operation.
|
||
|
C***LIBRARY SLATEC (BLAS)
|
||
|
C***CATEGORY D1B4
|
||
|
C***TYPE DOUBLE PRECISION (SSBMV-S, DSBMV-D, CSBMV-C)
|
||
|
C***KEYWORDS LEVEL 2 BLAS, LINEAR ALGEBRA
|
||
|
C***AUTHOR Dongarra, J. J., (ANL)
|
||
|
C Du Croz, J., (NAG)
|
||
|
C Hammarling, S., (NAG)
|
||
|
C Hanson, R. J., (SNLA)
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C DSBMV performs the matrix-vector operation
|
||
|
C
|
||
|
C y := alpha*A*x + beta*y,
|
||
|
C
|
||
|
C where alpha and beta are scalars, x and y are n element vectors and
|
||
|
C A is an n by n symmetric band matrix, with k super-diagonals.
|
||
|
C
|
||
|
C Parameters
|
||
|
C ==========
|
||
|
C
|
||
|
C UPLO - CHARACTER*1.
|
||
|
C On entry, UPLO specifies whether the upper or lower
|
||
|
C triangular part of the band matrix A is being supplied as
|
||
|
C follows:
|
||
|
C
|
||
|
C UPLO = 'U' or 'u' The upper triangular part of A is
|
||
|
C being supplied.
|
||
|
C
|
||
|
C UPLO = 'L' or 'l' The lower triangular part of A is
|
||
|
C being supplied.
|
||
|
C
|
||
|
C Unchanged on exit.
|
||
|
C
|
||
|
C N - INTEGER.
|
||
|
C On entry, N specifies the order of the matrix A.
|
||
|
C N must be at least zero.
|
||
|
C Unchanged on exit.
|
||
|
C
|
||
|
C K - INTEGER.
|
||
|
C On entry, K specifies the number of super-diagonals of the
|
||
|
C matrix A. K must satisfy 0 .le. K.
|
||
|
C Unchanged on exit.
|
||
|
C
|
||
|
C ALPHA - DOUBLE PRECISION.
|
||
|
C On entry, ALPHA specifies the scalar alpha.
|
||
|
C Unchanged on exit.
|
||
|
C
|
||
|
C A - DOUBLE PRECISION array of DIMENSION ( LDA, n ).
|
||
|
C Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
|
||
|
C by n part of the array A must contain the upper triangular
|
||
|
C band part of the symmetric matrix, supplied column by
|
||
|
C column, with the leading diagonal of the matrix in row
|
||
|
C ( k + 1 ) of the array, the first super-diagonal starting at
|
||
|
C position 2 in row k, and so on. The top left k by k triangle
|
||
|
C of the array A is not referenced.
|
||
|
C The following program segment will transfer the upper
|
||
|
C triangular part of a symmetric band matrix from conventional
|
||
|
C full matrix storage to band storage:
|
||
|
C
|
||
|
C DO 20, J = 1, N
|
||
|
C M = K + 1 - J
|
||
|
C DO 10, I = MAX( 1, J - K ), J
|
||
|
C A( M + I, J ) = matrix( I, J )
|
||
|
C 10 CONTINUE
|
||
|
C 20 CONTINUE
|
||
|
C
|
||
|
C Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
|
||
|
C by n part of the array A must contain the lower triangular
|
||
|
C band part of the symmetric matrix, supplied column by
|
||
|
C column, with the leading diagonal of the matrix in row 1 of
|
||
|
C the array, the first sub-diagonal starting at position 1 in
|
||
|
C row 2, and so on. The bottom right k by k triangle of the
|
||
|
C array A is not referenced.
|
||
|
C The following program segment will transfer the lower
|
||
|
C triangular part of a symmetric band matrix from conventional
|
||
|
C full matrix storage to band storage:
|
||
|
C
|
||
|
C DO 20, J = 1, N
|
||
|
C M = 1 - J
|
||
|
C DO 10, I = J, MIN( N, J + K )
|
||
|
C A( M + I, J ) = matrix( I, J )
|
||
|
C 10 CONTINUE
|
||
|
C 20 CONTINUE
|
||
|
C
|
||
|
C Unchanged on exit.
|
||
|
C
|
||
|
C LDA - INTEGER.
|
||
|
C On entry, LDA specifies the first dimension of A as declared
|
||
|
C in the calling (sub) program. LDA must be at least
|
||
|
C ( k + 1 ).
|
||
|
C Unchanged on exit.
|
||
|
C
|
||
|
C X - DOUBLE PRECISION array of DIMENSION at least
|
||
|
C ( 1 + ( n - 1 )*abs( INCX ) ).
|
||
|
C Before entry, the incremented array X must contain the
|
||
|
C vector x.
|
||
|
C Unchanged on exit.
|
||
|
C
|
||
|
C INCX - INTEGER.
|
||
|
C On entry, INCX specifies the increment for the elements of
|
||
|
C X. INCX must not be zero.
|
||
|
C Unchanged on exit.
|
||
|
C
|
||
|
C BETA - DOUBLE PRECISION.
|
||
|
C On entry, BETA specifies the scalar beta.
|
||
|
C Unchanged on exit.
|
||
|
C
|
||
|
C Y - DOUBLE PRECISION array of DIMENSION at least
|
||
|
C ( 1 + ( n - 1 )*abs( INCY ) ).
|
||
|
C Before entry, the incremented array Y must contain the
|
||
|
C vector y. On exit, Y is overwritten by the updated vector y.
|
||
|
C
|
||
|
C INCY - INTEGER.
|
||
|
C On entry, INCY specifies the increment for the elements of
|
||
|
C Y. INCY must not be zero.
|
||
|
C Unchanged on exit.
|
||
|
C
|
||
|
C***REFERENCES Dongarra, J. J., Du Croz, J., Hammarling, S., and
|
||
|
C Hanson, R. J. An extended set of Fortran basic linear
|
||
|
C algebra subprograms. ACM TOMS, Vol. 14, No. 1,
|
||
|
C pp. 1-17, March 1988.
|
||
|
C***ROUTINES CALLED LSAME, XERBLA
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 861022 DATE WRITTEN
|
||
|
C 910605 Modified to meet SLATEC prologue standards. Only comment
|
||
|
C lines were modified. (BKS)
|
||
|
C***END PROLOGUE DSBMV
|
||
|
C .. Scalar Arguments ..
|
||
|
DOUBLE PRECISION ALPHA, BETA
|
||
|
INTEGER INCX, INCY, K, LDA, N
|
||
|
CHARACTER*1 UPLO
|
||
|
C .. Array Arguments ..
|
||
|
DOUBLE PRECISION A( LDA, * ), X( * ), Y( * )
|
||
|
C .. Parameters ..
|
||
|
DOUBLE PRECISION ONE , ZERO
|
||
|
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
|
||
|
C .. Local Scalars ..
|
||
|
DOUBLE PRECISION TEMP1, TEMP2
|
||
|
INTEGER I, INFO, IX, IY, J, JX, JY, KPLUS1, KX, KY, L
|
||
|
C .. External Functions ..
|
||
|
LOGICAL LSAME
|
||
|
EXTERNAL LSAME
|
||
|
C .. External Subroutines ..
|
||
|
EXTERNAL XERBLA
|
||
|
C .. Intrinsic Functions ..
|
||
|
INTRINSIC MAX, MIN
|
||
|
C***FIRST EXECUTABLE STATEMENT DSBMV
|
||
|
C
|
||
|
C Test the input parameters.
|
||
|
C
|
||
|
INFO = 0
|
||
|
IF ( .NOT.LSAME( UPLO, 'U' ).AND.
|
||
|
$ .NOT.LSAME( UPLO, 'L' ) )THEN
|
||
|
INFO = 1
|
||
|
ELSE IF( N.LT.0 )THEN
|
||
|
INFO = 2
|
||
|
ELSE IF( K.LT.0 )THEN
|
||
|
INFO = 3
|
||
|
ELSE IF( LDA.LT.( K + 1 ) )THEN
|
||
|
INFO = 6
|
||
|
ELSE IF( INCX.EQ.0 )THEN
|
||
|
INFO = 8
|
||
|
ELSE IF( INCY.EQ.0 )THEN
|
||
|
INFO = 11
|
||
|
END IF
|
||
|
IF( INFO.NE.0 )THEN
|
||
|
CALL XERBLA( 'DSBMV ', INFO )
|
||
|
RETURN
|
||
|
END IF
|
||
|
C
|
||
|
C Quick return if possible.
|
||
|
C
|
||
|
IF( ( N.EQ.0 ).OR.( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
|
||
|
$ RETURN
|
||
|
C
|
||
|
C Set up the start points in X and Y.
|
||
|
C
|
||
|
IF( INCX.GT.0 )THEN
|
||
|
KX = 1
|
||
|
ELSE
|
||
|
KX = 1 - ( N - 1 )*INCX
|
||
|
END IF
|
||
|
IF( INCY.GT.0 )THEN
|
||
|
KY = 1
|
||
|
ELSE
|
||
|
KY = 1 - ( N - 1 )*INCY
|
||
|
END IF
|
||
|
C
|
||
|
C Start the operations. In this version the elements of the array A
|
||
|
C are accessed sequentially with one pass through A.
|
||
|
C
|
||
|
C First form y := beta*y.
|
||
|
C
|
||
|
IF( BETA.NE.ONE )THEN
|
||
|
IF( INCY.EQ.1 )THEN
|
||
|
IF( BETA.EQ.ZERO )THEN
|
||
|
DO 10, I = 1, N
|
||
|
Y( I ) = ZERO
|
||
|
10 CONTINUE
|
||
|
ELSE
|
||
|
DO 20, I = 1, N
|
||
|
Y( I ) = BETA*Y( I )
|
||
|
20 CONTINUE
|
||
|
END IF
|
||
|
ELSE
|
||
|
IY = KY
|
||
|
IF( BETA.EQ.ZERO )THEN
|
||
|
DO 30, I = 1, N
|
||
|
Y( IY ) = ZERO
|
||
|
IY = IY + INCY
|
||
|
30 CONTINUE
|
||
|
ELSE
|
||
|
DO 40, I = 1, N
|
||
|
Y( IY ) = BETA*Y( IY )
|
||
|
IY = IY + INCY
|
||
|
40 CONTINUE
|
||
|
END IF
|
||
|
END IF
|
||
|
END IF
|
||
|
IF( ALPHA.EQ.ZERO )
|
||
|
$ RETURN
|
||
|
IF( LSAME( UPLO, 'U' ) )THEN
|
||
|
C
|
||
|
C Form y when upper triangle of A is stored.
|
||
|
C
|
||
|
KPLUS1 = K + 1
|
||
|
IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
|
||
|
DO 60, J = 1, N
|
||
|
TEMP1 = ALPHA*X( J )
|
||
|
TEMP2 = ZERO
|
||
|
L = KPLUS1 - J
|
||
|
DO 50, I = MAX( 1, J - K ), J - 1
|
||
|
Y( I ) = Y( I ) + TEMP1*A( L + I, J )
|
||
|
TEMP2 = TEMP2 + A( L + I, J )*X( I )
|
||
|
50 CONTINUE
|
||
|
Y( J ) = Y( J ) + TEMP1*A( KPLUS1, J ) + ALPHA*TEMP2
|
||
|
60 CONTINUE
|
||
|
ELSE
|
||
|
JX = KX
|
||
|
JY = KY
|
||
|
DO 80, J = 1, N
|
||
|
TEMP1 = ALPHA*X( JX )
|
||
|
TEMP2 = ZERO
|
||
|
IX = KX
|
||
|
IY = KY
|
||
|
L = KPLUS1 - J
|
||
|
DO 70, I = MAX( 1, J - K ), J - 1
|
||
|
Y( IY ) = Y( IY ) + TEMP1*A( L + I, J )
|
||
|
TEMP2 = TEMP2 + A( L + I, J )*X( IX )
|
||
|
IX = IX + INCX
|
||
|
IY = IY + INCY
|
||
|
70 CONTINUE
|
||
|
Y( JY ) = Y( JY ) + TEMP1*A( KPLUS1, J ) + ALPHA*TEMP2
|
||
|
JX = JX + INCX
|
||
|
JY = JY + INCY
|
||
|
IF( J.GT.K )THEN
|
||
|
KX = KX + INCX
|
||
|
KY = KY + INCY
|
||
|
END IF
|
||
|
80 CONTINUE
|
||
|
END IF
|
||
|
ELSE
|
||
|
C
|
||
|
C Form y when lower triangle of A is stored.
|
||
|
C
|
||
|
IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
|
||
|
DO 100, J = 1, N
|
||
|
TEMP1 = ALPHA*X( J )
|
||
|
TEMP2 = ZERO
|
||
|
Y( J ) = Y( J ) + TEMP1*A( 1, J )
|
||
|
L = 1 - J
|
||
|
DO 90, I = J + 1, MIN( N, J + K )
|
||
|
Y( I ) = Y( I ) + TEMP1*A( L + I, J )
|
||
|
TEMP2 = TEMP2 + A( L + I, J )*X( I )
|
||
|
90 CONTINUE
|
||
|
Y( J ) = Y( J ) + ALPHA*TEMP2
|
||
|
100 CONTINUE
|
||
|
ELSE
|
||
|
JX = KX
|
||
|
JY = KY
|
||
|
DO 120, J = 1, N
|
||
|
TEMP1 = ALPHA*X( JX )
|
||
|
TEMP2 = ZERO
|
||
|
Y( JY ) = Y( JY ) + TEMP1*A( 1, J )
|
||
|
L = 1 - J
|
||
|
IX = JX
|
||
|
IY = JY
|
||
|
DO 110, I = J + 1, MIN( N, J + K )
|
||
|
IX = IX + INCX
|
||
|
IY = IY + INCY
|
||
|
Y( IY ) = Y( IY ) + TEMP1*A( L + I, J )
|
||
|
TEMP2 = TEMP2 + A( L + I, J )*X( IX )
|
||
|
110 CONTINUE
|
||
|
Y( JY ) = Y( JY ) + ALPHA*TEMP2
|
||
|
JX = JX + INCX
|
||
|
JY = JY + INCY
|
||
|
120 CONTINUE
|
||
|
END IF
|
||
|
END IF
|
||
|
C
|
||
|
RETURN
|
||
|
C
|
||
|
C End of DSBMV .
|
||
|
C
|
||
|
END
|