OpenLibm/slatec/dsoseq.f

502 lines
20 KiB
FortranFixed
Raw Normal View History

*DECK DSOSEQ
SUBROUTINE DSOSEQ (FNC, N, S, RTOLX, ATOLX, TOLF, IFLAG, MXIT,
+ NCJS, NSRRC, NSRI, IPRINT, FMAX, C, NC, B, P, TEMP, X, Y, FAC,
+ IS)
C***BEGIN PROLOGUE DSOSEQ
C***SUBSIDIARY
C***PURPOSE Subsidiary to DSOS
C***LIBRARY SLATEC
C***TYPE DOUBLE PRECISION (SOSEQS-S, DSOSEQ-D)
C***AUTHOR (UNKNOWN)
C***DESCRIPTION
C
C DSOSEQ solves a system of N simultaneous nonlinear equations.
C See the comments in the interfacing routine DSOS for a more
C detailed description of some of the items in the calling list.
C
C **********************************************************************
C -Input-
C
C FNC- Function subprogram which evaluates the equations
C N -number of equations
C S -Solution vector of initial guesses
C RTOLX-Relative error tolerance on solution components
C ATOLX-Absolute error tolerance on solution components
C TOLF-Residual error tolerance
C MXIT-Maximum number of allowable iterations.
C NCJS-Maximum number of consecutive iterative steps to perform
C using the same triangular Jacobian matrix approximation.
C NSRRC-Number of consecutive iterative steps for which the
C limiting precision accuracy test must be satisfied
C before the routine exits with IFLAG=4.
C NSRI-Number of consecutive iterative steps for which the
C diverging condition test must be satisfied before
C the routine exits with IFLAG=7.
C IPRINT-Internal printing parameter. You must set IPRINT=-1 if you
C want the intermediate solution iterates and a residual norm
C to be printed.
C C -Internal work array, dimensioned at least N*(N+1)/2.
C NC -Dimension of C array. NC .GE. N*(N+1)/2.
C B -Internal work array, dimensioned N.
C P -Internal work array, dimensioned N.
C TEMP-Internal work array, dimensioned N.
C X -Internal work array, dimensioned N.
C Y -Internal work array, dimensioned N.
C FAC -Internal work array, dimensioned N.
C IS -Internal work array, dimensioned N.
C
C -Output-
C S -Solution vector
C IFLAG-Status indicator flag
C MXIT-The actual number of iterations performed
C FMAX-Residual norm
C C -Upper unit triangular matrix which approximates the
C forward triangularization of the full Jacobian matrix.
C Stored in a vector with dimension at least N*(N+1)/2.
C B -Contains the residuals (function values) divided
C by the corresponding components of the P vector
C P -Array used to store the partial derivatives. After
C each iteration P(K) contains the maximal derivative
C occurring in the K-th reduced equation.
C TEMP-Array used to store the previous solution iterate.
C X -Solution vector. Contains the values achieved on the
C last iteration loop upon exit from DSOS.
C Y -Array containing the solution increments.
C FAC -Array containing factors used in computing numerical
C derivatives.
C IS -Records the pivotal information (column interchanges)
C
C **********************************************************************
C *** Three machine dependent parameters appear in this subroutine.
C
C *** The smallest positive magnitude, zero, is defined by the function
C *** routine D1MACH(1).
C
C *** URO, the computer unit roundoff value, is defined by D1MACH(3) for
C *** machines that round or D1MACH(4) for machines that truncate.
C *** URO is the smallest positive number such that 1.+URO .GT. 1.
C
C *** The output tape unit number, LOUN, is defined by the function
C *** I1MACH(2).
C **********************************************************************
C
C***SEE ALSO DSOS
C***ROUTINES CALLED D1MACH, DSOSSL, I1MACH
C***REVISION HISTORY (YYMMDD)
C 801001 DATE WRITTEN
C 890531 Changed all specific intrinsics to generic. (WRB)
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900328 Added TYPE section. (WRB)
C***END PROLOGUE DSOSEQ
C
C
INTEGER I1MACH
DOUBLE PRECISION D1MACH
INTEGER IC, ICR, IFLAG, IPRINT, IS(*), ISJ, ISV, IT, ITEM, ITRY,
1 J, JK, JS, K, KD, KJ, KK, KM1, KN, KSV, L, LOUN, LS, M, MIT,
2 MM, MXIT, N, NC, NCJS, NP1, NSRI, NSRRC
DOUBLE PRECISION ATOLX, B(*), C(*), CSV, F, FAC(*), FACT, FDIF,
1 FMAX, FMIN, FMXS, FN1, FN2, FNC, FP, H, HX, P(*), PMAX, RE,
2 RTOLX, S(*), SRURO, TEMP(*), TEST, TOLF, URO, X(*), XNORM,
3 Y(*), YJ, YN1, YN2, YN3, YNORM, YNS, ZERO
C
C BEGIN BLOCK PERMITTING ...EXITS TO 430
C BEGIN BLOCK PERMITTING ...EXITS TO 410
C BEGIN BLOCK PERMITTING ...EXITS TO 390
C***FIRST EXECUTABLE STATEMENT DSOSEQ
URO = D1MACH(4)
LOUN = I1MACH(2)
ZERO = D1MACH(1)
RE = MAX(RTOLX,URO)
SRURO = SQRT(URO)
C
IFLAG = 0
NP1 = N + 1
ICR = 0
IC = 0
ITRY = NCJS
YN1 = 0.0D0
YN2 = 0.0D0
YN3 = 0.0D0
YNS = 0.0D0
MIT = 0
FN1 = 0.0D0
FN2 = 0.0D0
FMXS = 0.0D0
C
C INITIALIZE THE INTERCHANGE (PIVOTING) VECTOR AND
C SAVE THE CURRENT SOLUTION APPROXIMATION FOR FUTURE USE.
C
DO 10 K = 1, N
IS(K) = K
X(K) = S(K)
TEMP(K) = X(K)
10 CONTINUE
C
C
C *********************************************************
C **** BEGIN PRINCIPAL ITERATION LOOP ****
C *********************************************************
C
DO 380 M = 1, MXIT
C BEGIN BLOCK PERMITTING ...EXITS TO 350
C BEGIN BLOCK PERMITTING ...EXITS TO 240
C
DO 20 K = 1, N
FAC(K) = SRURO
20 CONTINUE
C
30 CONTINUE
C BEGIN BLOCK PERMITTING ...EXITS TO 180
KN = 1
FMAX = 0.0D0
C
C
C ******** BEGIN SUBITERATION LOOP DEFINING
C THE LINEARIZATION OF EACH ********
C EQUATION WHICH RESULTS IN THE CONSTRUCTION
C OF AN UPPER ******** TRIANGULAR MATRIX
C APPROXIMATING THE FORWARD ********
C TRIANGULARIZATION OF THE FULL JACOBIAN
C MATRIX
C
DO 170 K = 1, N
C BEGIN BLOCK PERMITTING ...EXITS TO 160
KM1 = K - 1
C
C BACK-SOLVE A TRIANGULAR LINEAR
C SYSTEM OBTAINING IMPROVED SOLUTION
C VALUES FOR K-1 OF THE VARIABLES FROM
C THE FIRST K-1 EQUATIONS. THESE
C VARIABLES ARE THEN ELIMINATED FROM
C THE K-TH EQUATION.
C
IF (KM1 .EQ. 0) GO TO 50
CALL DSOSSL(K,N,KM1,Y,C,B,KN)
DO 40 J = 1, KM1
JS = IS(J)
X(JS) = TEMP(JS) + Y(J)
40 CONTINUE
50 CONTINUE
C
C
C EVALUATE THE K-TH EQUATION AND THE
C INTERMEDIATE COMPUTATION FOR THE MAX
C NORM OF THE RESIDUAL VECTOR.
C
F = FNC(X,K)
FMAX = MAX(FMAX,ABS(F))
C
C IF WE WISH TO PERFORM SEVERAL
C ITERATIONS USING A FIXED
C FACTORIZATION OF AN APPROXIMATE
C JACOBIAN,WE NEED ONLY UPDATE THE
C CONSTANT VECTOR.
C
C ...EXIT
IF (ITRY .LT. NCJS) GO TO 160
C
C
IT = 0
C
C COMPUTE PARTIAL DERIVATIVES THAT ARE
C REQUIRED IN THE LINEARIZATION OF THE
C K-TH REDUCED EQUATION
C
DO 90 J = K, N
ITEM = IS(J)
HX = X(ITEM)
H = FAC(ITEM)*HX
IF (ABS(H) .LE. ZERO)
1 H = FAC(ITEM)
X(ITEM) = HX + H
IF (KM1 .EQ. 0) GO TO 70
Y(J) = H
CALL DSOSSL(K,N,J,Y,C,B,KN)
DO 60 L = 1, KM1
LS = IS(L)
X(LS) = TEMP(LS) + Y(L)
60 CONTINUE
70 CONTINUE
FP = FNC(X,K)
X(ITEM) = HX
FDIF = FP - F
IF (ABS(FDIF) .GT. URO*ABS(F))
1 GO TO 80
FDIF = 0.0D0
IT = IT + 1
80 CONTINUE
P(J) = FDIF/H
90 CONTINUE
C
IF (IT .LE. (N - K)) GO TO 110
C
C ALL COMPUTED PARTIAL DERIVATIVES
C OF THE K-TH EQUATION ARE
C EFFECTIVELY ZERO.TRY LARGER
C PERTURBATIONS OF THE INDEPENDENT
C VARIABLES.
C
DO 100 J = K, N
ISJ = IS(J)
FACT = 100.0D0*FAC(ISJ)
C ..............................EXIT
IF (FACT .GT. 1.0D10)
1 GO TO 390
FAC(ISJ) = FACT
100 CONTINUE
C ............EXIT
GO TO 180
110 CONTINUE
C
C ...EXIT
IF (K .EQ. N) GO TO 160
C
C ACHIEVE A PIVOTING EFFECT BY
C CHOOSING THE MAXIMAL DERIVATIVE
C ELEMENT
C
PMAX = 0.0D0
DO 130 J = K, N
TEST = ABS(P(J))
IF (TEST .LE. PMAX) GO TO 120
PMAX = TEST
ISV = J
120 CONTINUE
130 CONTINUE
C ........................EXIT
IF (PMAX .EQ. 0.0D0) GO TO 390
C
C SET UP THE COEFFICIENTS FOR THE K-TH
C ROW OF THE TRIANGULAR LINEAR SYSTEM
C AND SAVE THE PARTIAL DERIVATIVE OF
C LARGEST MAGNITUDE
C
PMAX = P(ISV)
KK = KN
DO 140 J = K, N
IF (J .NE. ISV)
1 C(KK) = -P(J)/PMAX
KK = KK + 1
140 CONTINUE
P(K) = PMAX
C
C
C ...EXIT
IF (ISV .EQ. K) GO TO 160
C
C INTERCHANGE THE TWO COLUMNS OF C
C DETERMINED BY THE PIVOTAL STRATEGY
C
KSV = IS(K)
IS(K) = IS(ISV)
IS(ISV) = KSV
C
KD = ISV - K
KJ = K
DO 150 J = 1, K
CSV = C(KJ)
JK = KJ + KD
C(KJ) = C(JK)
C(JK) = CSV
KJ = KJ + N - J
150 CONTINUE
160 CONTINUE
C
KN = KN + NP1 - K
C
C STORE THE COMPONENTS FOR THE CONSTANT
C VECTOR
C
B(K) = -F/P(K)
C
170 CONTINUE
C ......EXIT
GO TO 190
180 CONTINUE
GO TO 30
190 CONTINUE
C
C ********
C ******** END OF LOOP CREATING THE TRIANGULAR
C LINEARIZATION MATRIX
C ********
C
C
C SOLVE THE RESULTING TRIANGULAR SYSTEM FOR A NEW
C SOLUTION APPROXIMATION AND OBTAIN THE SOLUTION
C INCREMENT NORM.
C
KN = KN - 1
Y(N) = B(N)
IF (N .GT. 1) CALL DSOSSL(N,N,N,Y,C,B,KN)
XNORM = 0.0D0
YNORM = 0.0D0
DO 200 J = 1, N
YJ = Y(J)
YNORM = MAX(YNORM,ABS(YJ))
JS = IS(J)
X(JS) = TEMP(JS) + YJ
XNORM = MAX(XNORM,ABS(X(JS)))
200 CONTINUE
C
C
C PRINT INTERMEDIATE SOLUTION ITERATES AND
C RESIDUAL NORM IF DESIRED
C
IF (IPRINT .NE. (-1)) GO TO 220
MM = M - 1
WRITE (LOUN,210) FMAX,MM,(X(J), J = 1, N)
210 FORMAT ('0RESIDUAL NORM =', D9.2, / 1X,
1 'SOLUTION ITERATE (', I3, ')', /
2 (1X, 5D26.14))
220 CONTINUE
C
C TEST FOR CONVERGENCE TO A SOLUTION (RELATIVE
C AND/OR ABSOLUTE ERROR COMPARISON ON SUCCESSIVE
C APPROXIMATIONS OF EACH SOLUTION VARIABLE)
C
DO 230 J = 1, N
JS = IS(J)
C ......EXIT
IF (ABS(Y(J)) .GT. RE*ABS(X(JS)) + ATOLX)
1 GO TO 240
230 CONTINUE
IF (FMAX .LE. FMXS) IFLAG = 1
240 CONTINUE
C
C TEST FOR CONVERGENCE TO A SOLUTION BASED ON
C RESIDUALS
C
IF (FMAX .LE. TOLF) IFLAG = IFLAG + 2
C ............EXIT
IF (IFLAG .GT. 0) GO TO 410
C
C
IF (M .GT. 1) GO TO 250
FMIN = FMAX
GO TO 330
250 CONTINUE
C BEGIN BLOCK PERMITTING ...EXITS TO 320
C
C SAVE SOLUTION HAVING MINIMUM RESIDUAL NORM.
C
IF (FMAX .GE. FMIN) GO TO 270
MIT = M + 1
YN1 = YNORM
YN2 = YNS
FN1 = FMXS
FMIN = FMAX
DO 260 J = 1, N
S(J) = X(J)
260 CONTINUE
IC = 0
270 CONTINUE
C
C TEST FOR LIMITING PRECISION CONVERGENCE. VERY
C SLOWLY CONVERGENT PROBLEMS MAY ALSO BE
C DETECTED.
C
IF (YNORM .GT. SRURO*XNORM) GO TO 290
IF (FMAX .LT. 0.2D0*FMXS
1 .OR. FMAX .GT. 5.0D0*FMXS) GO TO 290
IF (YNORM .LT. 0.2D0*YNS
1 .OR. YNORM .GT. 5.0D0*YNS) GO TO 290
ICR = ICR + 1
IF (ICR .GE. NSRRC) GO TO 280
IC = 0
C .........EXIT
GO TO 320
280 CONTINUE
IFLAG = 4
FMAX = FMIN
C ........................EXIT
GO TO 430
290 CONTINUE
ICR = 0
C
C TEST FOR DIVERGENCE OF THE ITERATIVE SCHEME.
C
IF (YNORM .GT. 2.0D0*YNS
1 .OR. FMAX .GT. 2.0D0*FMXS) GO TO 300
IC = 0
GO TO 310
300 CONTINUE
IC = IC + 1
C ......EXIT
IF (IC .LT. NSRI) GO TO 320
IFLAG = 7
C .....................EXIT
GO TO 410
310 CONTINUE
320 CONTINUE
330 CONTINUE
C
C CHECK TO SEE IF NEXT ITERATION CAN USE THE OLD
C JACOBIAN FACTORIZATION
C
ITRY = ITRY - 1
IF (ITRY .EQ. 0) GO TO 340
IF (20.0D0*YNORM .GT. XNORM) GO TO 340
IF (YNORM .GT. 2.0D0*YNS) GO TO 340
C ......EXIT
IF (FMAX .LT. 2.0D0*FMXS) GO TO 350
340 CONTINUE
ITRY = NCJS
350 CONTINUE
C
C SAVE THE CURRENT SOLUTION APPROXIMATION AND THE
C RESIDUAL AND SOLUTION INCREMENT NORMS FOR USE IN THE
C NEXT ITERATION.
C
DO 360 J = 1, N
TEMP(J) = X(J)
360 CONTINUE
IF (M .NE. MIT) GO TO 370
FN2 = FMAX
YN3 = YNORM
370 CONTINUE
FMXS = FMAX
YNS = YNORM
C
C
380 CONTINUE
C
C *********************************************************
C **** END OF PRINCIPAL ITERATION LOOP ****
C *********************************************************
C
C
C TOO MANY ITERATIONS, CONVERGENCE WAS NOT ACHIEVED.
M = MXIT
IFLAG = 5
IF (YN1 .GT. 10.0D0*YN2 .OR. YN3 .GT. 10.0D0*YN1)
1 IFLAG = 6
IF (FN1 .GT. 5.0D0*FMIN .OR. FN2 .GT. 5.0D0*FMIN)
1 IFLAG = 6
IF (FMAX .GT. 5.0D0*FMIN) IFLAG = 6
C ......EXIT
GO TO 410
390 CONTINUE
C
C
C A JACOBIAN-RELATED MATRIX IS EFFECTIVELY SINGULAR.
IFLAG = 8
DO 400 J = 1, N
S(J) = TEMP(J)
400 CONTINUE
C ......EXIT
GO TO 430
410 CONTINUE
C
C
DO 420 J = 1, N
S(J) = X(J)
420 CONTINUE
430 CONTINUE
C
C
MXIT = M
RETURN
END