mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-03 23:43:41 +01:00
99 lines
3.4 KiB
FortranFixed
99 lines
3.4 KiB
FortranFixed
|
*DECK DX4
|
||
|
SUBROUTINE DX4 (U, IDMN, I, J, UXXX, UXXXX)
|
||
|
C***BEGIN PROLOGUE DX4
|
||
|
C***SUBSIDIARY
|
||
|
C***PURPOSE Subsidiary to SEPX4
|
||
|
C***LIBRARY SLATEC
|
||
|
C***TYPE SINGLE PRECISION (DX4-S)
|
||
|
C***AUTHOR (UNKNOWN)
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C This program computes second order finite difference
|
||
|
C approximations to the third and fourth X
|
||
|
C partial derivatives of U at the (I,J) mesh point.
|
||
|
C
|
||
|
C***SEE ALSO SEPX4
|
||
|
C***ROUTINES CALLED (NONE)
|
||
|
C***COMMON BLOCKS SPL4
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 801001 DATE WRITTEN
|
||
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C 900402 Added TYPE section. (WRB)
|
||
|
C***END PROLOGUE DX4
|
||
|
C
|
||
|
COMMON /SPL4/ KSWX ,KSWY ,K ,L ,
|
||
|
1 AIT ,BIT ,CIT ,DIT ,
|
||
|
2 MIT ,NIT ,IS ,MS ,
|
||
|
3 JS ,NS ,DLX ,DLY ,
|
||
|
4 TDLX3 ,TDLY3 ,DLX4 ,DLY4
|
||
|
DIMENSION U(IDMN,*)
|
||
|
C***FIRST EXECUTABLE STATEMENT DX4
|
||
|
IF (I.GT.2 .AND. I.LT.(K-1)) GO TO 50
|
||
|
IF (I .EQ. 1) GO TO 10
|
||
|
IF (I .EQ. 2) GO TO 30
|
||
|
IF (I .EQ. K-1) GO TO 60
|
||
|
IF (I .EQ. K) GO TO 80
|
||
|
C
|
||
|
C COMPUTE PARTIAL DERIVATIVE APPROXIMATIONS AT X=A
|
||
|
C
|
||
|
10 IF (KSWX .EQ. 1) GO TO 20
|
||
|
UXXX = (-5.0*U(1,J)+18.0*U(2,J)-24.0*U(3,J)+14.0*U(4,J)-
|
||
|
1 3.0*U(5,J))/(TDLX3)
|
||
|
UXXXX = (3.0*U(1,J)-14.0*U(2,J)+26.0*U(3,J)-24.0*U(4,J)+
|
||
|
1 11.0*U(5,J)-2.0*U(6,J))/DLX4
|
||
|
RETURN
|
||
|
C
|
||
|
C PERIODIC AT X=A
|
||
|
C
|
||
|
20 UXXX = (-U(K-2,J)+2.0*U(K-1,J)-2.0*U(2,J)+U(3,J))/(TDLX3)
|
||
|
UXXXX = (U(K-2,J)-4.0*U(K-1,J)+6.0*U(1,J)-4.0*U(2,J)+U(3,J))/DLX4
|
||
|
RETURN
|
||
|
C
|
||
|
C COMPUTE PARTIAL DERIVATIVE APPROXIMATIONS AT X=A+DLX
|
||
|
C
|
||
|
30 IF (KSWX .EQ. 1) GO TO 40
|
||
|
UXXX = (-3.0*U(1,J)+10.0*U(2,J)-12.0*U(3,J)+6.0*U(4,J)-U(5,J))/
|
||
|
1 TDLX3
|
||
|
UXXXX = (2.0*U(1,J)-9.0*U(2,J)+16.0*U(3,J)-14.0*U(4,J)+6.0*U(5,J)-
|
||
|
1 U(6,J))/DLX4
|
||
|
RETURN
|
||
|
C
|
||
|
C PERIODIC AT X=A+DLX
|
||
|
C
|
||
|
40 UXXX = (-U(K-1,J)+2.0*U(1,J)-2.0*U(3,J)+U(4,J))/(TDLX3)
|
||
|
UXXXX = (U(K-1,J)-4.0*U(1,J)+6.0*U(2,J)-4.0*U(3,J)+U(4,J))/DLX4
|
||
|
RETURN
|
||
|
C
|
||
|
C COMPUTE PARTIAL DERIVATIVE APPROXIMATIONS ON THE INTERIOR
|
||
|
C
|
||
|
50 CONTINUE
|
||
|
UXXX = (-U(I-2,J)+2.0*U(I-1,J)-2.0*U(I+1,J)+U(I+2,J))/TDLX3
|
||
|
UXXXX = (U(I-2,J)-4.0*U(I-1,J)+6.0*U(I,J)-4.0*U(I+1,J)+U(I+2,J))/
|
||
|
1 DLX4
|
||
|
RETURN
|
||
|
C
|
||
|
C COMPUTE PARTIAL DERIVATIVE APPROXIMATIONS AT X=B-DLX
|
||
|
C
|
||
|
60 IF (KSWX .EQ. 1) GO TO 70
|
||
|
UXXX = (U(K-4,J)-6.0*U(K-3,J)+12.0*U(K-2,J)-10.0*U(K-1,J)+
|
||
|
1 3.0*U(K,J))/TDLX3
|
||
|
UXXXX = (-U(K-5,J)+6.0*U(K-4,J)-14.0*U(K-3,J)+16.0*U(K-2,J)-
|
||
|
1 9.0*U(K-1,J)+2.0*U(K,J))/DLX4
|
||
|
RETURN
|
||
|
C
|
||
|
C PERIODIC AT X=B-DLX
|
||
|
C
|
||
|
70 UXXX = (-U(K-3,J)+2.0*U(K-2,J)-2.0*U(1,J)+U(2,J))/TDLX3
|
||
|
UXXXX = (U(K-3,J)-4.0*U(K-2,J)+6.0*U(K-1,J)-4.0*U(1,J)+U(2,J))/
|
||
|
1 DLX4
|
||
|
RETURN
|
||
|
C
|
||
|
C COMPUTE PARTIAL DERIVATIVE APPROXIMATIONS AT X=B
|
||
|
C
|
||
|
80 UXXX = -(3.0*U(K-4,J)-14.0*U(K-3,J)+24.0*U(K-2,J)-18.0*U(K-1,J)+
|
||
|
1 5.0*U(K,J))/TDLX3
|
||
|
UXXXX = (-2.0*U(K-5,J)+11.0*U(K-4,J)-24.0*U(K-3,J)+26.0*U(K-2,J)-
|
||
|
1 14.0*U(K-1,J)+3.0*U(K,J))/DLX4
|
||
|
RETURN
|
||
|
END
|