mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-03 23:43:41 +01:00
139 lines
4.4 KiB
FortranFixed
139 lines
4.4 KiB
FortranFixed
|
*DECK GAMMA
|
||
|
FUNCTION GAMMA (X)
|
||
|
C***BEGIN PROLOGUE GAMMA
|
||
|
C***PURPOSE Compute the complete Gamma function.
|
||
|
C***LIBRARY SLATEC (FNLIB)
|
||
|
C***CATEGORY C7A
|
||
|
C***TYPE SINGLE PRECISION (GAMMA-S, DGAMMA-D, CGAMMA-C)
|
||
|
C***KEYWORDS COMPLETE GAMMA FUNCTION, FNLIB, SPECIAL FUNCTIONS
|
||
|
C***AUTHOR Fullerton, W., (LANL)
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C GAMMA computes the gamma function at X, where X is not 0, -1, -2, ....
|
||
|
C GAMMA and X are single precision.
|
||
|
C
|
||
|
C***REFERENCES (NONE)
|
||
|
C***ROUTINES CALLED CSEVL, GAMLIM, INITS, R1MACH, R9LGMC, XERMSG
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 770601 DATE WRITTEN
|
||
|
C 890531 Changed all specific intrinsics to generic. (WRB)
|
||
|
C 890531 REVISION DATE from Version 3.2
|
||
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
|
||
|
C***END PROLOGUE GAMMA
|
||
|
DIMENSION GCS(23)
|
||
|
LOGICAL FIRST
|
||
|
SAVE GCS, PI, SQ2PIL, NGCS, XMIN, XMAX, DXREL, FIRST
|
||
|
DATA GCS ( 1) / .0085711955 90989331E0/
|
||
|
DATA GCS ( 2) / .0044153813 24841007E0/
|
||
|
DATA GCS ( 3) / .0568504368 1599363E0/
|
||
|
DATA GCS ( 4) /-.0042198353 96418561E0/
|
||
|
DATA GCS ( 5) / .0013268081 81212460E0/
|
||
|
DATA GCS ( 6) /-.0001893024 529798880E0/
|
||
|
DATA GCS ( 7) / .0000360692 532744124E0/
|
||
|
DATA GCS ( 8) /-.0000060567 619044608E0/
|
||
|
DATA GCS ( 9) / .0000010558 295463022E0/
|
||
|
DATA GCS (10) /-.0000001811 967365542E0/
|
||
|
DATA GCS (11) / .0000000311 772496471E0/
|
||
|
DATA GCS (12) /-.0000000053 542196390E0/
|
||
|
DATA GCS (13) / .0000000009 193275519E0/
|
||
|
DATA GCS (14) /-.0000000001 577941280E0/
|
||
|
DATA GCS (15) / .0000000000 270798062E0/
|
||
|
DATA GCS (16) /-.0000000000 046468186E0/
|
||
|
DATA GCS (17) / .0000000000 007973350E0/
|
||
|
DATA GCS (18) /-.0000000000 001368078E0/
|
||
|
DATA GCS (19) / .0000000000 000234731E0/
|
||
|
DATA GCS (20) /-.0000000000 000040274E0/
|
||
|
DATA GCS (21) / .0000000000 000006910E0/
|
||
|
DATA GCS (22) /-.0000000000 000001185E0/
|
||
|
DATA GCS (23) / .0000000000 000000203E0/
|
||
|
DATA PI /3.14159 26535 89793 24E0/
|
||
|
C SQ2PIL IS LOG (SQRT (2.*PI) )
|
||
|
DATA SQ2PIL /0.91893 85332 04672 74E0/
|
||
|
DATA FIRST /.TRUE./
|
||
|
C
|
||
|
C LANL DEPENDENT CODE REMOVED 81.02.04
|
||
|
C
|
||
|
C***FIRST EXECUTABLE STATEMENT GAMMA
|
||
|
IF (FIRST) THEN
|
||
|
C
|
||
|
C ---------------------------------------------------------------------
|
||
|
C INITIALIZE. FIND LEGAL BOUNDS FOR X, AND DETERMINE THE NUMBER OF
|
||
|
C TERMS IN THE SERIES REQUIRED TO ATTAIN AN ACCURACY TEN TIMES BETTER
|
||
|
C THAN MACHINE PRECISION.
|
||
|
C
|
||
|
NGCS = INITS (GCS, 23, 0.1*R1MACH(3))
|
||
|
C
|
||
|
CALL GAMLIM (XMIN, XMAX)
|
||
|
DXREL = SQRT (R1MACH(4))
|
||
|
C
|
||
|
C ---------------------------------------------------------------------
|
||
|
C FINISH INITIALIZATION. START EVALUATING GAMMA(X).
|
||
|
C
|
||
|
ENDIF
|
||
|
FIRST = .FALSE.
|
||
|
C
|
||
|
Y = ABS(X)
|
||
|
IF (Y.GT.10.0) GO TO 50
|
||
|
C
|
||
|
C COMPUTE GAMMA(X) FOR ABS(X) .LE. 10.0. REDUCE INTERVAL AND
|
||
|
C FIND GAMMA(1+Y) FOR 0. .LE. Y .LT. 1. FIRST OF ALL.
|
||
|
C
|
||
|
N = X
|
||
|
IF (X.LT.0.) N = N - 1
|
||
|
Y = X - N
|
||
|
N = N - 1
|
||
|
GAMMA = 0.9375 + CSEVL(2.*Y-1., GCS, NGCS)
|
||
|
IF (N.EQ.0) RETURN
|
||
|
C
|
||
|
IF (N.GT.0) GO TO 30
|
||
|
C
|
||
|
C COMPUTE GAMMA(X) FOR X .LT. 1.
|
||
|
C
|
||
|
N = -N
|
||
|
IF (X .EQ. 0.) CALL XERMSG ('SLATEC', 'GAMMA', 'X IS 0', 4, 2)
|
||
|
IF (X .LT. 0. .AND. X+N-2 .EQ. 0.) CALL XERMSG ('SLATEC', 'GAMMA'
|
||
|
1, 'X IS A NEGATIVE INTEGER', 4, 2)
|
||
|
IF (X .LT. (-0.5) .AND. ABS((X-AINT(X-0.5))/X) .LT. DXREL) CALL
|
||
|
1XERMSG ( 'SLATEC', 'GAMMA',
|
||
|
2'ANSWER LT HALF PRECISION BECAUSE X TOO NEAR NEGATIVE INTEGER'
|
||
|
3, 1, 1)
|
||
|
C
|
||
|
DO 20 I=1,N
|
||
|
GAMMA = GAMMA / (X+I-1)
|
||
|
20 CONTINUE
|
||
|
RETURN
|
||
|
C
|
||
|
C GAMMA(X) FOR X .GE. 2.
|
||
|
C
|
||
|
30 DO 40 I=1,N
|
||
|
GAMMA = (Y+I)*GAMMA
|
||
|
40 CONTINUE
|
||
|
RETURN
|
||
|
C
|
||
|
C COMPUTE GAMMA(X) FOR ABS(X) .GT. 10.0. RECALL Y = ABS(X).
|
||
|
C
|
||
|
50 IF (X .GT. XMAX) CALL XERMSG ('SLATEC', 'GAMMA',
|
||
|
+ 'X SO BIG GAMMA OVERFLOWS', 3, 2)
|
||
|
C
|
||
|
GAMMA = 0.
|
||
|
IF (X .LT. XMIN) CALL XERMSG ('SLATEC', 'GAMMA',
|
||
|
+ 'X SO SMALL GAMMA UNDERFLOWS', 2, 1)
|
||
|
IF (X.LT.XMIN) RETURN
|
||
|
C
|
||
|
GAMMA = EXP((Y-0.5)*LOG(Y) - Y + SQ2PIL + R9LGMC(Y) )
|
||
|
IF (X.GT.0.) RETURN
|
||
|
C
|
||
|
IF (ABS((X-AINT(X-0.5))/X) .LT. DXREL) CALL XERMSG ('SLATEC',
|
||
|
+ 'GAMMA',
|
||
|
+ 'ANSWER LT HALF PRECISION, X TOO NEAR NEGATIVE INTEGER', 1, 1)
|
||
|
C
|
||
|
SINPIY = SIN (PI*Y)
|
||
|
IF (SINPIY .EQ. 0.) CALL XERMSG ('SLATEC', 'GAMMA',
|
||
|
+ 'X IS A NEGATIVE INTEGER', 4, 2)
|
||
|
C
|
||
|
GAMMA = -PI / (Y*SINPIY*GAMMA)
|
||
|
C
|
||
|
RETURN
|
||
|
END
|