OpenLibm/slatec/h12.f

119 lines
4 KiB
FortranFixed
Raw Normal View History

*DECK H12
SUBROUTINE H12 (MODE, LPIVOT, L1, M, U, IUE, UP, C, ICE, ICV, NCV)
C***BEGIN PROLOGUE H12
C***SUBSIDIARY
C***PURPOSE Subsidiary to HFTI, LSEI and WNNLS
C***LIBRARY SLATEC
C***TYPE SINGLE PRECISION (H12-S, DH12-D)
C***AUTHOR (UNKNOWN)
C***DESCRIPTION
C
C C.L.Lawson and R.J.Hanson, Jet Propulsion Laboratory, 1973 Jun 12
C to appear in 'Solving Least Squares Problems', Prentice-Hall, 1974
C
C Construction and/or application of a single
C Householder transformation.. Q = I + U*(U**T)/B
C
C MODE = 1 or 2 to select algorithm H1 or H2 .
C LPIVOT is the index of the pivot element.
C L1,M If L1 .LE. M the transformation will be constructed to
C zero elements indexed from L1 through M. If L1 GT. M
C THE SUBROUTINE DOES AN IDENTITY TRANSFORMATION.
C U(),IUE,UP On entry to H1 U() contains the pivot vector.
C IUE is the storage increment between elements.
C On exit from H1 U() and UP
C contain quantities defining the vector U of the
C Householder transformation. On entry to H2 U()
C and UP should contain quantities previously computed
C by H1. These will not be modified by H2.
C C() On entry to H1 or H2 C() contains a matrix which will be
C regarded as a set of vectors to which the Householder
C transformation is to be applied. On exit C() contains the
C set of transformed vectors.
C ICE Storage increment between elements of vectors in C().
C ICV Storage increment between vectors in C().
C NCV Number of vectors in C() to be transformed. If NCV .LE. 0
C no operations will be done on C().
C
C***SEE ALSO HFTI, LSEI, WNNLS
C***ROUTINES CALLED SAXPY, SDOT, SSWAP
C***REVISION HISTORY (YYMMDD)
C 790101 DATE WRITTEN
C 890531 Changed all specific intrinsics to generic. (WRB)
C 890831 Modified array declarations. (WRB)
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900328 Added TYPE section. (WRB)
C***END PROLOGUE H12
DIMENSION U(IUE,*), C(*)
C***FIRST EXECUTABLE STATEMENT H12
ONE=1.
C
IF (0.GE.LPIVOT.OR.LPIVOT.GE.L1.OR.L1.GT.M) RETURN
CL=ABS(U(1,LPIVOT))
IF (MODE.EQ.2) GO TO 60
C ****** CONSTRUCT THE TRANSFORMATION. ******
DO 10 J=L1,M
10 CL=MAX(ABS(U(1,J)),CL)
IF (CL) 130,130,20
20 CLINV=ONE/CL
SM=(U(1,LPIVOT)*CLINV)**2
DO 30 J=L1,M
30 SM=SM+(U(1,J)*CLINV)**2
CL=CL*SQRT(SM)
IF (U(1,LPIVOT)) 50,50,40
40 CL=-CL
50 UP=U(1,LPIVOT)-CL
U(1,LPIVOT)=CL
GO TO 70
C ****** APPLY THE TRANSFORMATION I+U*(U**T)/B TO C. ******
C
60 IF (CL) 130,130,70
70 IF (NCV.LE.0) RETURN
B=UP*U(1,LPIVOT)
C B MUST BE NONPOSITIVE HERE. IF B = 0., RETURN.
C
IF (B) 80,130,130
80 B=ONE/B
MML1P2=M-L1+2
IF (MML1P2.GT.20) GO TO 140
I2=1-ICV+ICE*(LPIVOT-1)
INCR=ICE*(L1-LPIVOT)
DO 120 J=1,NCV
I2=I2+ICV
I3=I2+INCR
I4=I3
SM=C(I2)*UP
DO 90 I=L1,M
SM=SM+C(I3)*U(1,I)
90 I3=I3+ICE
IF (SM) 100,120,100
100 SM=SM*B
C(I2)=C(I2)+SM*UP
DO 110 I=L1,M
C(I4)=C(I4)+SM*U(1,I)
110 I4=I4+ICE
120 CONTINUE
130 RETURN
140 CONTINUE
L1M1=L1-1
KL1=1+(L1M1-1)*ICE
KL2=KL1
KLP=1+(LPIVOT-1)*ICE
UL1M1=U(1,L1M1)
U(1,L1M1)=UP
IF (LPIVOT.EQ.L1M1) GO TO 150
CALL SSWAP(NCV,C(KL1),ICV,C(KLP),ICV)
150 CONTINUE
DO 160 J=1,NCV
SM=SDOT(MML1P2,U(1,L1M1),IUE,C(KL1),ICE)
SM=SM*B
CALL SAXPY (MML1P2,SM,U(1,L1M1),IUE,C(KL1),ICE)
KL1=KL1+ICV
160 CONTINUE
U(1,L1M1)=UL1M1
IF (LPIVOT.EQ.L1M1) RETURN
KL1=KL2
CALL SSWAP(NCV,C(KL1),ICV,C(KLP),ICV)
RETURN
END