mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-04 07:53:38 +01:00
289 lines
9.7 KiB
FortranFixed
289 lines
9.7 KiB
FortranFixed
|
*DECK HFTI
|
||
|
SUBROUTINE HFTI (A, MDA, M, N, B, MDB, NB, TAU, KRANK, RNORM, H,
|
||
|
+ G, IP)
|
||
|
C***BEGIN PROLOGUE HFTI
|
||
|
C***PURPOSE Solve a linear least squares problems by performing a QR
|
||
|
C factorization of the matrix using Householder
|
||
|
C transformations.
|
||
|
C***LIBRARY SLATEC
|
||
|
C***CATEGORY D9
|
||
|
C***TYPE SINGLE PRECISION (HFTI-S, DHFTI-D)
|
||
|
C***KEYWORDS CURVE FITTING, LINEAR LEAST SQUARES, QR FACTORIZATION
|
||
|
C***AUTHOR Lawson, C. L., (JPL)
|
||
|
C Hanson, R. J., (SNLA)
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C DIMENSION A(MDA,N),(B(MDB,NB) or B(M)),RNORM(NB),H(N),G(N),IP(N)
|
||
|
C
|
||
|
C This subroutine solves a linear least squares problem or a set of
|
||
|
C linear least squares problems having the same matrix but different
|
||
|
C right-side vectors. The problem data consists of an M by N matrix
|
||
|
C A, an M by NB matrix B, and an absolute tolerance parameter TAU
|
||
|
C whose usage is described below. The NB column vectors of B
|
||
|
C represent right-side vectors for NB distinct linear least squares
|
||
|
C problems.
|
||
|
C
|
||
|
C This set of problems can also be written as the matrix least
|
||
|
C squares problem
|
||
|
C
|
||
|
C AX = B,
|
||
|
C
|
||
|
C where X is the N by NB solution matrix.
|
||
|
C
|
||
|
C Note that if B is the M by M identity matrix, then X will be the
|
||
|
C pseudo-inverse of A.
|
||
|
C
|
||
|
C This subroutine first transforms the augmented matrix (A B) to a
|
||
|
C matrix (R C) using premultiplying Householder transformations with
|
||
|
C column interchanges. All subdiagonal elements in the matrix R are
|
||
|
C zero and its diagonal elements satisfy
|
||
|
C
|
||
|
C ABS(R(I,I)).GE.ABS(R(I+1,I+1)),
|
||
|
C
|
||
|
C I = 1,...,L-1, where
|
||
|
C
|
||
|
C L = MIN(M,N).
|
||
|
C
|
||
|
C The subroutine will compute an integer, KRANK, equal to the number
|
||
|
C of diagonal terms of R that exceed TAU in magnitude. Then a
|
||
|
C solution of minimum Euclidean length is computed using the first
|
||
|
C KRANK rows of (R C).
|
||
|
C
|
||
|
C To be specific we suggest that the user consider an easily
|
||
|
C computable matrix norm, such as, the maximum of all column sums of
|
||
|
C magnitudes.
|
||
|
C
|
||
|
C Now if the relative uncertainty of B is EPS, (norm of uncertainty/
|
||
|
C norm of B), it is suggested that TAU be set approximately equal to
|
||
|
C EPS*(norm of A).
|
||
|
C
|
||
|
C The user must dimension all arrays appearing in the call list..
|
||
|
C A(MDA,N),(B(MDB,NB) or B(M)),RNORM(NB),H(N),G(N),IP(N). This
|
||
|
C permits the solution of a range of problems in the same array
|
||
|
C space.
|
||
|
C
|
||
|
C The entire set of parameters for HFTI are
|
||
|
C
|
||
|
C INPUT..
|
||
|
C
|
||
|
C A(*,*),MDA,M,N The array A(*,*) initially contains the M by N
|
||
|
C matrix A of the least squares problem AX = B.
|
||
|
C The first dimensioning parameter of the array
|
||
|
C A(*,*) is MDA, which must satisfy MDA.GE.M
|
||
|
C Either M.GE.N or M.LT.N is permitted. There
|
||
|
C is no restriction on the rank of A. The
|
||
|
C condition MDA.LT.M is considered an error.
|
||
|
C
|
||
|
C B(*),MDB,NB If NB = 0 the subroutine will perform the
|
||
|
C orthogonal decomposition but will make no
|
||
|
C references to the array B(*). If NB.GT.0
|
||
|
C the array B(*) must initially contain the M by
|
||
|
C NB matrix B of the least squares problem AX =
|
||
|
C B. If NB.GE.2 the array B(*) must be doubly
|
||
|
C subscripted with first dimensioning parameter
|
||
|
C MDB.GE.MAX(M,N). If NB = 1 the array B(*) may
|
||
|
C be either doubly or singly subscripted. In
|
||
|
C the latter case the value of MDB is arbitrary
|
||
|
C but it should be set to some valid integer
|
||
|
C value such as MDB = M.
|
||
|
C
|
||
|
C The condition of NB.GT.1.AND.MDB.LT. MAX(M,N)
|
||
|
C is considered an error.
|
||
|
C
|
||
|
C TAU Absolute tolerance parameter provided by user
|
||
|
C for pseudorank determination.
|
||
|
C
|
||
|
C H(*),G(*),IP(*) Arrays of working space used by HFTI.
|
||
|
C
|
||
|
C OUTPUT..
|
||
|
C
|
||
|
C A(*,*) The contents of the array A(*,*) will be
|
||
|
C modified by the subroutine. These contents
|
||
|
C are not generally required by the user.
|
||
|
C
|
||
|
C B(*) On return the array B(*) will contain the N by
|
||
|
C NB solution matrix X.
|
||
|
C
|
||
|
C KRANK Set by the subroutine to indicate the
|
||
|
C pseudorank of A.
|
||
|
C
|
||
|
C RNORM(*) On return, RNORM(J) will contain the Euclidean
|
||
|
C norm of the residual vector for the problem
|
||
|
C defined by the J-th column vector of the array
|
||
|
C B(*,*) for J = 1,...,NB.
|
||
|
C
|
||
|
C H(*),G(*) On return these arrays respectively contain
|
||
|
C elements of the pre- and post-multiplying
|
||
|
C Householder transformations used to compute
|
||
|
C the minimum Euclidean length solution.
|
||
|
C
|
||
|
C IP(*) Array in which the subroutine records indices
|
||
|
C describing the permutation of column vectors.
|
||
|
C The contents of arrays H(*),G(*) and IP(*)
|
||
|
C are not generally required by the user.
|
||
|
C
|
||
|
C***REFERENCES C. L. Lawson and R. J. Hanson, Solving Least Squares
|
||
|
C Problems, Prentice-Hall, Inc., 1974, Chapter 14.
|
||
|
C***ROUTINES CALLED H12, R1MACH, XERMSG
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 790101 DATE WRITTEN
|
||
|
C 890531 Changed all specific intrinsics to generic. (WRB)
|
||
|
C 891006 Cosmetic changes to prologue. (WRB)
|
||
|
C 891006 REVISION DATE from Version 3.2
|
||
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
|
||
|
C 901005 Replace usage of DIFF with usage of R1MACH. (RWC)
|
||
|
C 920501 Reformatted the REFERENCES section. (WRB)
|
||
|
C***END PROLOGUE HFTI
|
||
|
DIMENSION A(MDA,*),B(MDB,*),H(*),G(*),RNORM(*)
|
||
|
INTEGER IP(*)
|
||
|
DOUBLE PRECISION SM,DZERO
|
||
|
SAVE RELEPS
|
||
|
DATA RELEPS /0.E0/
|
||
|
C***FIRST EXECUTABLE STATEMENT HFTI
|
||
|
IF (RELEPS.EQ.0) RELEPS = R1MACH(4)
|
||
|
SZERO=0.
|
||
|
DZERO=0.D0
|
||
|
FACTOR=0.001
|
||
|
C
|
||
|
K=0
|
||
|
LDIAG=MIN(M,N)
|
||
|
IF (LDIAG.LE.0) GO TO 270
|
||
|
IF (.NOT.MDA.LT.M) GO TO 5
|
||
|
NERR=1
|
||
|
IOPT=2
|
||
|
CALL XERMSG ('SLATEC', 'HFTI', 'MDA.LT.M, PROBABLE ERROR.',
|
||
|
+ NERR, IOPT)
|
||
|
RETURN
|
||
|
5 CONTINUE
|
||
|
C
|
||
|
IF (.NOT.(NB.GT.1.AND.MAX(M,N).GT.MDB)) GO TO 6
|
||
|
NERR=2
|
||
|
IOPT=2
|
||
|
CALL XERMSG ('SLATEC', 'HFTI',
|
||
|
+ 'MDB.LT.MAX(M,N).AND.NB.GT.1. PROBABLE ERROR.', NERR, IOPT)
|
||
|
RETURN
|
||
|
6 CONTINUE
|
||
|
C
|
||
|
DO 80 J=1,LDIAG
|
||
|
IF (J.EQ.1) GO TO 20
|
||
|
C
|
||
|
C UPDATE SQUARED COLUMN LENGTHS AND FIND LMAX
|
||
|
C ..
|
||
|
LMAX=J
|
||
|
DO 10 L=J,N
|
||
|
H(L)=H(L)-A(J-1,L)**2
|
||
|
IF (H(L).GT.H(LMAX)) LMAX=L
|
||
|
10 CONTINUE
|
||
|
IF (FACTOR*H(LMAX) .GT. HMAX*RELEPS) GO TO 50
|
||
|
C
|
||
|
C COMPUTE SQUARED COLUMN LENGTHS AND FIND LMAX
|
||
|
C ..
|
||
|
20 LMAX=J
|
||
|
DO 40 L=J,N
|
||
|
H(L)=0.
|
||
|
DO 30 I=J,M
|
||
|
30 H(L)=H(L)+A(I,L)**2
|
||
|
IF (H(L).GT.H(LMAX)) LMAX=L
|
||
|
40 CONTINUE
|
||
|
HMAX=H(LMAX)
|
||
|
C ..
|
||
|
C LMAX HAS BEEN DETERMINED
|
||
|
C
|
||
|
C DO COLUMN INTERCHANGES IF NEEDED.
|
||
|
C ..
|
||
|
50 CONTINUE
|
||
|
IP(J)=LMAX
|
||
|
IF (IP(J).EQ.J) GO TO 70
|
||
|
DO 60 I=1,M
|
||
|
TMP=A(I,J)
|
||
|
A(I,J)=A(I,LMAX)
|
||
|
60 A(I,LMAX)=TMP
|
||
|
H(LMAX)=H(J)
|
||
|
C
|
||
|
C COMPUTE THE J-TH TRANSFORMATION AND APPLY IT TO A AND B.
|
||
|
C ..
|
||
|
70 CALL H12 (1,J,J+1,M,A(1,J),1,H(J),A(1,J+1),1,MDA,N-J)
|
||
|
80 CALL H12 (2,J,J+1,M,A(1,J),1,H(J),B,1,MDB,NB)
|
||
|
C
|
||
|
C DETERMINE THE PSEUDORANK, K, USING THE TOLERANCE, TAU.
|
||
|
C ..
|
||
|
DO 90 J=1,LDIAG
|
||
|
IF (ABS(A(J,J)).LE.TAU) GO TO 100
|
||
|
90 CONTINUE
|
||
|
K=LDIAG
|
||
|
GO TO 110
|
||
|
100 K=J-1
|
||
|
110 KP1=K+1
|
||
|
C
|
||
|
C COMPUTE THE NORMS OF THE RESIDUAL VECTORS.
|
||
|
C
|
||
|
IF (NB.LE.0) GO TO 140
|
||
|
DO 130 JB=1,NB
|
||
|
TMP=SZERO
|
||
|
IF (KP1.GT.M) GO TO 130
|
||
|
DO 120 I=KP1,M
|
||
|
120 TMP=TMP+B(I,JB)**2
|
||
|
130 RNORM(JB)=SQRT(TMP)
|
||
|
140 CONTINUE
|
||
|
C SPECIAL FOR PSEUDORANK = 0
|
||
|
IF (K.GT.0) GO TO 160
|
||
|
IF (NB.LE.0) GO TO 270
|
||
|
DO 150 JB=1,NB
|
||
|
DO 150 I=1,N
|
||
|
150 B(I,JB)=SZERO
|
||
|
GO TO 270
|
||
|
C
|
||
|
C IF THE PSEUDORANK IS LESS THAN N COMPUTE HOUSEHOLDER
|
||
|
C DECOMPOSITION OF FIRST K ROWS.
|
||
|
C ..
|
||
|
160 IF (K.EQ.N) GO TO 180
|
||
|
DO 170 II=1,K
|
||
|
I=KP1-II
|
||
|
170 CALL H12 (1,I,KP1,N,A(I,1),MDA,G(I),A,MDA,1,I-1)
|
||
|
180 CONTINUE
|
||
|
C
|
||
|
C
|
||
|
IF (NB.LE.0) GO TO 270
|
||
|
DO 260 JB=1,NB
|
||
|
C
|
||
|
C SOLVE THE K BY K TRIANGULAR SYSTEM.
|
||
|
C ..
|
||
|
DO 210 L=1,K
|
||
|
SM=DZERO
|
||
|
I=KP1-L
|
||
|
IF (I.EQ.K) GO TO 200
|
||
|
IP1=I+1
|
||
|
DO 190 J=IP1,K
|
||
|
190 SM=SM+A(I,J)*DBLE(B(J,JB))
|
||
|
200 SM1=SM
|
||
|
210 B(I,JB)=(B(I,JB)-SM1)/A(I,I)
|
||
|
C
|
||
|
C COMPLETE COMPUTATION OF SOLUTION VECTOR.
|
||
|
C ..
|
||
|
IF (K.EQ.N) GO TO 240
|
||
|
DO 220 J=KP1,N
|
||
|
220 B(J,JB)=SZERO
|
||
|
DO 230 I=1,K
|
||
|
230 CALL H12 (2,I,KP1,N,A(I,1),MDA,G(I),B(1,JB),1,MDB,1)
|
||
|
C
|
||
|
C RE-ORDER THE SOLUTION VECTOR TO COMPENSATE FOR THE
|
||
|
C COLUMN INTERCHANGES.
|
||
|
C ..
|
||
|
240 DO 250 JJ=1,LDIAG
|
||
|
J=LDIAG+1-JJ
|
||
|
IF (IP(J).EQ.J) GO TO 250
|
||
|
L=IP(J)
|
||
|
TMP=B(L,JB)
|
||
|
B(L,JB)=B(J,JB)
|
||
|
B(J,JB)=TMP
|
||
|
250 CONTINUE
|
||
|
260 CONTINUE
|
||
|
C ..
|
||
|
C THE SOLUTION VECTORS, X, ARE NOW
|
||
|
C IN THE FIRST N ROWS OF THE ARRAY B(,).
|
||
|
C
|
||
|
270 KRANK=K
|
||
|
RETURN
|
||
|
END
|