OpenLibm/slatec/htridi.f

186 lines
6.2 KiB
FortranFixed
Raw Normal View History

*DECK HTRIDI
SUBROUTINE HTRIDI (NM, N, AR, AI, D, E, E2, TAU)
C***BEGIN PROLOGUE HTRIDI
C***PURPOSE Reduce a complex Hermitian matrix to a real symmetric
C tridiagonal matrix using unitary similarity
C transformations.
C***LIBRARY SLATEC (EISPACK)
C***CATEGORY D4C1B1
C***TYPE SINGLE PRECISION (HTRIDI-S)
C***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
C***AUTHOR Smith, B. T., et al.
C***DESCRIPTION
C
C This subroutine is a translation of a complex analogue of
C the ALGOL procedure TRED1, NUM. MATH. 11, 181-195(1968)
C by Martin, Reinsch, and Wilkinson.
C HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 212-226(1971).
C
C This subroutine reduces a COMPLEX HERMITIAN matrix
C to a real symmetric tridiagonal matrix using
C unitary similarity transformations.
C
C On INPUT
C
C NM must be set to the row dimension of the two-dimensional
C array parameters, AR and AI, as declared in the calling
C program dimension statement. NM is an INTEGER variable.
C
C N is the order of the matrix A=(AR,AI). N is an INTEGER
C variable. N must be less than or equal to NM.
C
C AR and AI contain the real and imaginary parts, respectively,
C of the complex Hermitian input matrix. Only the lower
C triangle of the matrix need be supplied. AR and AI are two-
C dimensional REAL arrays, dimensioned AR(NM,N) and AI(NM,N).
C
C On OUTPUT
C
C AR and AI contain some information about the unitary trans-
C formations used in the reduction in the strict lower triangle
C of AR and the full lower triangle of AI. The rest of the
C matrices are unaltered.
C
C D contains the diagonal elements of the real symmetric
C tridiagonal matrix. D is a one-dimensional REAL array,
C dimensioned D(N).
C
C E contains the subdiagonal elements of the real tridiagonal
C matrix in its last N-1 positions. E(1) is set to zero.
C E is a one-dimensional REAL array, dimensioned E(N).
C
C E2 contains the squares of the corresponding elements of E.
C E2(1) is set to zero. E2 may coincide with E if the squares
C are not needed. E2 is a one-dimensional REAL array,
C dimensioned E2(N).
C
C TAU contains further information about the transformations.
C TAU is a one-dimensional REAL array, dimensioned TAU(2,N).
C
C Calls PYTHAG(A,B) for sqrt(A**2 + B**2).
C
C Questions and comments should be directed to B. S. Garbow,
C APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
C ------------------------------------------------------------------
C
C***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
C Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
C system Routines - EISPACK Guide, Springer-Verlag,
C 1976.
C***ROUTINES CALLED PYTHAG
C***REVISION HISTORY (YYMMDD)
C 760101 DATE WRITTEN
C 890831 Modified array declarations. (WRB)
C 890831 REVISION DATE from Version 3.2
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 920501 Reformatted the REFERENCES section. (WRB)
C***END PROLOGUE HTRIDI
C
INTEGER I,J,K,L,N,II,NM,JP1
REAL AR(NM,*),AI(NM,*),D(*),E(*),E2(*),TAU(2,*)
REAL F,G,H,FI,GI,HH,SI,SCALE
REAL PYTHAG
C
C***FIRST EXECUTABLE STATEMENT HTRIDI
TAU(1,N) = 1.0E0
TAU(2,N) = 0.0E0
C
DO 100 I = 1, N
100 D(I) = AR(I,I)
C .......... FOR I=N STEP -1 UNTIL 1 DO -- ..........
DO 300 II = 1, N
I = N + 1 - II
L = I - 1
H = 0.0E0
SCALE = 0.0E0
IF (L .LT. 1) GO TO 130
C .......... SCALE ROW (ALGOL TOL THEN NOT NEEDED) ..........
DO 120 K = 1, L
120 SCALE = SCALE + ABS(AR(I,K)) + ABS(AI(I,K))
C
IF (SCALE .NE. 0.0E0) GO TO 140
TAU(1,L) = 1.0E0
TAU(2,L) = 0.0E0
130 E(I) = 0.0E0
E2(I) = 0.0E0
GO TO 290
C
140 DO 150 K = 1, L
AR(I,K) = AR(I,K) / SCALE
AI(I,K) = AI(I,K) / SCALE
H = H + AR(I,K) * AR(I,K) + AI(I,K) * AI(I,K)
150 CONTINUE
C
E2(I) = SCALE * SCALE * H
G = SQRT(H)
E(I) = SCALE * G
F = PYTHAG(AR(I,L),AI(I,L))
C .......... FORM NEXT DIAGONAL ELEMENT OF MATRIX T ..........
IF (F .EQ. 0.0E0) GO TO 160
TAU(1,L) = (AI(I,L) * TAU(2,I) - AR(I,L) * TAU(1,I)) / F
SI = (AR(I,L) * TAU(2,I) + AI(I,L) * TAU(1,I)) / F
H = H + F * G
G = 1.0E0 + G / F
AR(I,L) = G * AR(I,L)
AI(I,L) = G * AI(I,L)
IF (L .EQ. 1) GO TO 270
GO TO 170
160 TAU(1,L) = -TAU(1,I)
SI = TAU(2,I)
AR(I,L) = G
170 F = 0.0E0
C
DO 240 J = 1, L
G = 0.0E0
GI = 0.0E0
C .......... FORM ELEMENT OF A*U ..........
DO 180 K = 1, J
G = G + AR(J,K) * AR(I,K) + AI(J,K) * AI(I,K)
GI = GI - AR(J,K) * AI(I,K) + AI(J,K) * AR(I,K)
180 CONTINUE
C
JP1 = J + 1
IF (L .LT. JP1) GO TO 220
C
DO 200 K = JP1, L
G = G + AR(K,J) * AR(I,K) - AI(K,J) * AI(I,K)
GI = GI - AR(K,J) * AI(I,K) - AI(K,J) * AR(I,K)
200 CONTINUE
C .......... FORM ELEMENT OF P ..........
220 E(J) = G / H
TAU(2,J) = GI / H
F = F + E(J) * AR(I,J) - TAU(2,J) * AI(I,J)
240 CONTINUE
C
HH = F / (H + H)
C .......... FORM REDUCED A ..........
DO 260 J = 1, L
F = AR(I,J)
G = E(J) - HH * F
E(J) = G
FI = -AI(I,J)
GI = TAU(2,J) - HH * FI
TAU(2,J) = -GI
C
DO 260 K = 1, J
AR(J,K) = AR(J,K) - F * E(K) - G * AR(I,K)
1 + FI * TAU(2,K) + GI * AI(I,K)
AI(J,K) = AI(J,K) - F * TAU(2,K) - G * AI(I,K)
1 - FI * E(K) - GI * AR(I,K)
260 CONTINUE
C
270 DO 280 K = 1, L
AR(I,K) = SCALE * AR(I,K)
AI(I,K) = SCALE * AI(I,K)
280 CONTINUE
C
TAU(2,L) = -SI
290 HH = D(I)
D(I) = AR(I,I)
AR(I,I) = HH
AI(I,I) = SCALE * SQRT(H)
300 CONTINUE
C
RETURN
END