mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-03 23:43:41 +01:00
434 lines
15 KiB
FortranFixed
434 lines
15 KiB
FortranFixed
|
*DECK INVIT
|
||
|
SUBROUTINE INVIT (NM, N, A, WR, WI, SELECT, MM, M, Z, IERR, RM1,
|
||
|
+ RV1, RV2)
|
||
|
C***BEGIN PROLOGUE INVIT
|
||
|
C***PURPOSE Compute the eigenvectors of a real upper Hessenberg
|
||
|
C matrix associated with specified eigenvalues by inverse
|
||
|
C iteration.
|
||
|
C***LIBRARY SLATEC (EISPACK)
|
||
|
C***CATEGORY D4C2B
|
||
|
C***TYPE SINGLE PRECISION (INVIT-S, CINVIT-C)
|
||
|
C***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
|
||
|
C***AUTHOR Smith, B. T., et al.
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C This subroutine is a translation of the ALGOL procedure INVIT
|
||
|
C by Peters and Wilkinson.
|
||
|
C HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 418-439(1971).
|
||
|
C
|
||
|
C This subroutine finds those eigenvectors of a REAL UPPER
|
||
|
C Hessenberg matrix corresponding to specified eigenvalues,
|
||
|
C using inverse iteration.
|
||
|
C
|
||
|
C On INPUT
|
||
|
C
|
||
|
C NM must be set to the row dimension of the two-dimensional
|
||
|
C array parameters, A and Z, as declared in the calling
|
||
|
C program dimension statement. NM is an INTEGER variable.
|
||
|
C
|
||
|
C N is the order of the matrix A. N is an INTEGER variable.
|
||
|
C N must be less than or equal to NM.
|
||
|
C
|
||
|
C A contains the upper Hessenberg matrix. A is a two-dimensional
|
||
|
C REAL array, dimensioned A(NM,N).
|
||
|
C
|
||
|
C WR and WI contain the real and imaginary parts, respectively,
|
||
|
C of the eigenvalues of the Hessenberg matrix. The eigenvalues
|
||
|
C must be stored in a manner identical to that output by
|
||
|
C subroutine HQR, which recognizes possible splitting of the
|
||
|
C matrix. WR and WI are one-dimensional REAL arrays,
|
||
|
C dimensioned WR(N) and WI(N).
|
||
|
C
|
||
|
C SELECT specifies the eigenvectors to be found. The
|
||
|
C eigenvector corresponding to the J-th eigenvalue is
|
||
|
C specified by setting SELECT(J) to .TRUE. SELECT is a
|
||
|
C one-dimensional LOGICAL array, dimensioned SELECT(N).
|
||
|
C
|
||
|
C MM should be set to an upper bound for the number of
|
||
|
C columns required to store the eigenvectors to be found.
|
||
|
C NOTE that two columns are required to store the
|
||
|
C eigenvector corresponding to a complex eigenvalue. One
|
||
|
C column is required to store the eigenvector corresponding
|
||
|
C to a real eigenvalue. MM is an INTEGER variable.
|
||
|
C
|
||
|
C On OUTPUT
|
||
|
C
|
||
|
C A and WI are unaltered.
|
||
|
C
|
||
|
C WR may have been altered since close eigenvalues are perturbed
|
||
|
C slightly in searching for independent eigenvectors.
|
||
|
C
|
||
|
C SELECT may have been altered. If the elements corresponding
|
||
|
C to a pair of conjugate complex eigenvalues were each
|
||
|
C initially set to .TRUE., the program resets the second of
|
||
|
C the two elements to .FALSE.
|
||
|
C
|
||
|
C M is the number of columns actually used to store the
|
||
|
C eigenvectors. M is an INTEGER variable.
|
||
|
C
|
||
|
C Z contains the real and imaginary parts of the eigenvectors.
|
||
|
C The eigenvectors are packed into the columns of Z starting
|
||
|
C at the first column. If the next selected eigenvalue is
|
||
|
C real, the next column of Z contains its eigenvector. If the
|
||
|
C eigenvalue is complex, the next two columns of Z contain the
|
||
|
C real and imaginary parts of its eigenvector, with the real
|
||
|
C part first. The eigenvectors are normalized so that the
|
||
|
C component of largest magnitude is 1. Any vector which fails
|
||
|
C the acceptance test is set to zero. Z is a two-dimensional
|
||
|
C REAL array, dimensioned Z(NM,MM).
|
||
|
C
|
||
|
C IERR is an INTEGER flag set to
|
||
|
C Zero for normal return,
|
||
|
C -(2*N+1) if more than MM columns of Z are necessary
|
||
|
C to store the eigenvectors corresponding to
|
||
|
C the specified eigenvalues (in this case, M is
|
||
|
C equal to the number of columns of Z containing
|
||
|
C eigenvectors already computed),
|
||
|
C -K if the iteration corresponding to the K-th
|
||
|
C value fails (if this occurs more than once, K
|
||
|
C is the index of the last occurrence); the
|
||
|
C corresponding columns of Z are set to zero
|
||
|
C vectors,
|
||
|
C -(N+K) if both error situations occur.
|
||
|
C
|
||
|
C RM1 is a two-dimensional REAL array used for temporary storage.
|
||
|
C This array holds the triangularized form of the upper
|
||
|
C Hessenberg matrix used in the inverse iteration process.
|
||
|
C RM1 is dimensioned RM1(N,N).
|
||
|
C
|
||
|
C RV1 and RV2 are one-dimensional REAL arrays used for temporary
|
||
|
C storage. They hold the approximate eigenvectors during the
|
||
|
C inverse iteration process. RV1 and RV2 are dimensioned
|
||
|
C RV1(N) and RV2(N).
|
||
|
C
|
||
|
C The ALGOL procedure GUESSVEC appears in INVIT in-line.
|
||
|
C
|
||
|
C Calls PYTHAG(A,B) for sqrt(A**2 + B**2).
|
||
|
C Calls CDIV for complex division.
|
||
|
C
|
||
|
C Questions and comments should be directed to B. S. Garbow,
|
||
|
C APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
|
||
|
C ------------------------------------------------------------------
|
||
|
C
|
||
|
C***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
|
||
|
C Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
|
||
|
C system Routines - EISPACK Guide, Springer-Verlag,
|
||
|
C 1976.
|
||
|
C***ROUTINES CALLED CDIV, PYTHAG
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 760101 DATE WRITTEN
|
||
|
C 890531 Changed all specific intrinsics to generic. (WRB)
|
||
|
C 890831 Modified array declarations. (WRB)
|
||
|
C 890831 REVISION DATE from Version 3.2
|
||
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C 920501 Reformatted the REFERENCES section. (WRB)
|
||
|
C***END PROLOGUE INVIT
|
||
|
C
|
||
|
INTEGER I,J,K,L,M,N,S,II,IP,MM,MP,NM,NS,N1,UK,IP1,ITS,KM1,IERR
|
||
|
REAL A(NM,*),WR(*),WI(*),Z(NM,*)
|
||
|
REAL RM1(N,*),RV1(*),RV2(*)
|
||
|
REAL T,W,X,Y,EPS3
|
||
|
REAL NORM,NORMV,GROWTO,ILAMBD,RLAMBD,UKROOT
|
||
|
REAL PYTHAG
|
||
|
LOGICAL SELECT(N)
|
||
|
C
|
||
|
C***FIRST EXECUTABLE STATEMENT INVIT
|
||
|
IERR = 0
|
||
|
UK = 0
|
||
|
S = 1
|
||
|
C .......... IP = 0, REAL EIGENVALUE
|
||
|
C 1, FIRST OF CONJUGATE COMPLEX PAIR
|
||
|
C -1, SECOND OF CONJUGATE COMPLEX PAIR ..........
|
||
|
IP = 0
|
||
|
N1 = N - 1
|
||
|
C
|
||
|
DO 980 K = 1, N
|
||
|
IF (WI(K) .EQ. 0.0E0 .OR. IP .LT. 0) GO TO 100
|
||
|
IP = 1
|
||
|
IF (SELECT(K) .AND. SELECT(K+1)) SELECT(K+1) = .FALSE.
|
||
|
100 IF (.NOT. SELECT(K)) GO TO 960
|
||
|
IF (WI(K) .NE. 0.0E0) S = S + 1
|
||
|
IF (S .GT. MM) GO TO 1000
|
||
|
IF (UK .GE. K) GO TO 200
|
||
|
C .......... CHECK FOR POSSIBLE SPLITTING ..........
|
||
|
DO 120 UK = K, N
|
||
|
IF (UK .EQ. N) GO TO 140
|
||
|
IF (A(UK+1,UK) .EQ. 0.0E0) GO TO 140
|
||
|
120 CONTINUE
|
||
|
C .......... COMPUTE INFINITY NORM OF LEADING UK BY UK
|
||
|
C (HESSENBERG) MATRIX ..........
|
||
|
140 NORM = 0.0E0
|
||
|
MP = 1
|
||
|
C
|
||
|
DO 180 I = 1, UK
|
||
|
X = 0.0E0
|
||
|
C
|
||
|
DO 160 J = MP, UK
|
||
|
160 X = X + ABS(A(I,J))
|
||
|
C
|
||
|
IF (X .GT. NORM) NORM = X
|
||
|
MP = I
|
||
|
180 CONTINUE
|
||
|
C .......... EPS3 REPLACES ZERO PIVOT IN DECOMPOSITION
|
||
|
C AND CLOSE ROOTS ARE MODIFIED BY EPS3 ..........
|
||
|
IF (NORM .EQ. 0.0E0) NORM = 1.0E0
|
||
|
EPS3 = NORM
|
||
|
190 EPS3 = 0.5E0*EPS3
|
||
|
IF (NORM + EPS3 .GT. NORM) GO TO 190
|
||
|
EPS3 = 2.0E0*EPS3
|
||
|
C .......... GROWTO IS THE CRITERION FOR THE GROWTH ..........
|
||
|
UKROOT = SQRT(REAL(UK))
|
||
|
GROWTO = 0.1E0 / UKROOT
|
||
|
200 RLAMBD = WR(K)
|
||
|
ILAMBD = WI(K)
|
||
|
IF (K .EQ. 1) GO TO 280
|
||
|
KM1 = K - 1
|
||
|
GO TO 240
|
||
|
C .......... PERTURB EIGENVALUE IF IT IS CLOSE
|
||
|
C TO ANY PREVIOUS EIGENVALUE ..........
|
||
|
220 RLAMBD = RLAMBD + EPS3
|
||
|
C .......... FOR I=K-1 STEP -1 UNTIL 1 DO -- ..........
|
||
|
240 DO 260 II = 1, KM1
|
||
|
I = K - II
|
||
|
IF (SELECT(I) .AND. ABS(WR(I)-RLAMBD) .LT. EPS3 .AND.
|
||
|
1 ABS(WI(I)-ILAMBD) .LT. EPS3) GO TO 220
|
||
|
260 CONTINUE
|
||
|
C
|
||
|
WR(K) = RLAMBD
|
||
|
C .......... PERTURB CONJUGATE EIGENVALUE TO MATCH ..........
|
||
|
IP1 = K + IP
|
||
|
WR(IP1) = RLAMBD
|
||
|
C .......... FORM UPPER HESSENBERG A-RLAMBD*I (TRANSPOSED)
|
||
|
C AND INITIAL REAL VECTOR ..........
|
||
|
280 MP = 1
|
||
|
C
|
||
|
DO 320 I = 1, UK
|
||
|
C
|
||
|
DO 300 J = MP, UK
|
||
|
300 RM1(J,I) = A(I,J)
|
||
|
C
|
||
|
RM1(I,I) = RM1(I,I) - RLAMBD
|
||
|
MP = I
|
||
|
RV1(I) = EPS3
|
||
|
320 CONTINUE
|
||
|
C
|
||
|
ITS = 0
|
||
|
IF (ILAMBD .NE. 0.0E0) GO TO 520
|
||
|
C .......... REAL EIGENVALUE.
|
||
|
C TRIANGULAR DECOMPOSITION WITH INTERCHANGES,
|
||
|
C REPLACING ZERO PIVOTS BY EPS3 ..........
|
||
|
IF (UK .EQ. 1) GO TO 420
|
||
|
C
|
||
|
DO 400 I = 2, UK
|
||
|
MP = I - 1
|
||
|
IF (ABS(RM1(MP,I)) .LE. ABS(RM1(MP,MP))) GO TO 360
|
||
|
C
|
||
|
DO 340 J = MP, UK
|
||
|
Y = RM1(J,I)
|
||
|
RM1(J,I) = RM1(J,MP)
|
||
|
RM1(J,MP) = Y
|
||
|
340 CONTINUE
|
||
|
C
|
||
|
360 IF (RM1(MP,MP) .EQ. 0.0E0) RM1(MP,MP) = EPS3
|
||
|
X = RM1(MP,I) / RM1(MP,MP)
|
||
|
IF (X .EQ. 0.0E0) GO TO 400
|
||
|
C
|
||
|
DO 380 J = I, UK
|
||
|
380 RM1(J,I) = RM1(J,I) - X * RM1(J,MP)
|
||
|
C
|
||
|
400 CONTINUE
|
||
|
C
|
||
|
420 IF (RM1(UK,UK) .EQ. 0.0E0) RM1(UK,UK) = EPS3
|
||
|
C .......... BACK SUBSTITUTION FOR REAL VECTOR
|
||
|
C FOR I=UK STEP -1 UNTIL 1 DO -- ..........
|
||
|
440 DO 500 II = 1, UK
|
||
|
I = UK + 1 - II
|
||
|
Y = RV1(I)
|
||
|
IF (I .EQ. UK) GO TO 480
|
||
|
IP1 = I + 1
|
||
|
C
|
||
|
DO 460 J = IP1, UK
|
||
|
460 Y = Y - RM1(J,I) * RV1(J)
|
||
|
C
|
||
|
480 RV1(I) = Y / RM1(I,I)
|
||
|
500 CONTINUE
|
||
|
C
|
||
|
GO TO 740
|
||
|
C .......... COMPLEX EIGENVALUE.
|
||
|
C TRIANGULAR DECOMPOSITION WITH INTERCHANGES,
|
||
|
C REPLACING ZERO PIVOTS BY EPS3. STORE IMAGINARY
|
||
|
C PARTS IN UPPER TRIANGLE STARTING AT (1,3) ..........
|
||
|
520 NS = N - S
|
||
|
Z(1,S-1) = -ILAMBD
|
||
|
Z(1,S) = 0.0E0
|
||
|
IF (N .EQ. 2) GO TO 550
|
||
|
RM1(1,3) = -ILAMBD
|
||
|
Z(1,S-1) = 0.0E0
|
||
|
IF (N .EQ. 3) GO TO 550
|
||
|
C
|
||
|
DO 540 I = 4, N
|
||
|
540 RM1(1,I) = 0.0E0
|
||
|
C
|
||
|
550 DO 640 I = 2, UK
|
||
|
MP = I - 1
|
||
|
W = RM1(MP,I)
|
||
|
IF (I .LT. N) T = RM1(MP,I+1)
|
||
|
IF (I .EQ. N) T = Z(MP,S-1)
|
||
|
X = RM1(MP,MP) * RM1(MP,MP) + T * T
|
||
|
IF (W * W .LE. X) GO TO 580
|
||
|
X = RM1(MP,MP) / W
|
||
|
Y = T / W
|
||
|
RM1(MP,MP) = W
|
||
|
IF (I .LT. N) RM1(MP,I+1) = 0.0E0
|
||
|
IF (I .EQ. N) Z(MP,S-1) = 0.0E0
|
||
|
C
|
||
|
DO 560 J = I, UK
|
||
|
W = RM1(J,I)
|
||
|
RM1(J,I) = RM1(J,MP) - X * W
|
||
|
RM1(J,MP) = W
|
||
|
IF (J .LT. N1) GO TO 555
|
||
|
L = J - NS
|
||
|
Z(I,L) = Z(MP,L) - Y * W
|
||
|
Z(MP,L) = 0.0E0
|
||
|
GO TO 560
|
||
|
555 RM1(I,J+2) = RM1(MP,J+2) - Y * W
|
||
|
RM1(MP,J+2) = 0.0E0
|
||
|
560 CONTINUE
|
||
|
C
|
||
|
RM1(I,I) = RM1(I,I) - Y * ILAMBD
|
||
|
IF (I .LT. N1) GO TO 570
|
||
|
L = I - NS
|
||
|
Z(MP,L) = -ILAMBD
|
||
|
Z(I,L) = Z(I,L) + X * ILAMBD
|
||
|
GO TO 640
|
||
|
570 RM1(MP,I+2) = -ILAMBD
|
||
|
RM1(I,I+2) = RM1(I,I+2) + X * ILAMBD
|
||
|
GO TO 640
|
||
|
580 IF (X .NE. 0.0E0) GO TO 600
|
||
|
RM1(MP,MP) = EPS3
|
||
|
IF (I .LT. N) RM1(MP,I+1) = 0.0E0
|
||
|
IF (I .EQ. N) Z(MP,S-1) = 0.0E0
|
||
|
T = 0.0E0
|
||
|
X = EPS3 * EPS3
|
||
|
600 W = W / X
|
||
|
X = RM1(MP,MP) * W
|
||
|
Y = -T * W
|
||
|
C
|
||
|
DO 620 J = I, UK
|
||
|
IF (J .LT. N1) GO TO 610
|
||
|
L = J - NS
|
||
|
T = Z(MP,L)
|
||
|
Z(I,L) = -X * T - Y * RM1(J,MP)
|
||
|
GO TO 615
|
||
|
610 T = RM1(MP,J+2)
|
||
|
RM1(I,J+2) = -X * T - Y * RM1(J,MP)
|
||
|
615 RM1(J,I) = RM1(J,I) - X * RM1(J,MP) + Y * T
|
||
|
620 CONTINUE
|
||
|
C
|
||
|
IF (I .LT. N1) GO TO 630
|
||
|
L = I - NS
|
||
|
Z(I,L) = Z(I,L) - ILAMBD
|
||
|
GO TO 640
|
||
|
630 RM1(I,I+2) = RM1(I,I+2) - ILAMBD
|
||
|
640 CONTINUE
|
||
|
C
|
||
|
IF (UK .LT. N1) GO TO 650
|
||
|
L = UK - NS
|
||
|
T = Z(UK,L)
|
||
|
GO TO 655
|
||
|
650 T = RM1(UK,UK+2)
|
||
|
655 IF (RM1(UK,UK) .EQ. 0.0E0 .AND. T .EQ. 0.0E0) RM1(UK,UK) = EPS3
|
||
|
C .......... BACK SUBSTITUTION FOR COMPLEX VECTOR
|
||
|
C FOR I=UK STEP -1 UNTIL 1 DO -- ..........
|
||
|
660 DO 720 II = 1, UK
|
||
|
I = UK + 1 - II
|
||
|
X = RV1(I)
|
||
|
Y = 0.0E0
|
||
|
IF (I .EQ. UK) GO TO 700
|
||
|
IP1 = I + 1
|
||
|
C
|
||
|
DO 680 J = IP1, UK
|
||
|
IF (J .LT. N1) GO TO 670
|
||
|
L = J - NS
|
||
|
T = Z(I,L)
|
||
|
GO TO 675
|
||
|
670 T = RM1(I,J+2)
|
||
|
675 X = X - RM1(J,I) * RV1(J) + T * RV2(J)
|
||
|
Y = Y - RM1(J,I) * RV2(J) - T * RV1(J)
|
||
|
680 CONTINUE
|
||
|
C
|
||
|
700 IF (I .LT. N1) GO TO 710
|
||
|
L = I - NS
|
||
|
T = Z(I,L)
|
||
|
GO TO 715
|
||
|
710 T = RM1(I,I+2)
|
||
|
715 CALL CDIV(X,Y,RM1(I,I),T,RV1(I),RV2(I))
|
||
|
720 CONTINUE
|
||
|
C .......... ACCEPTANCE TEST FOR REAL OR COMPLEX
|
||
|
C EIGENVECTOR AND NORMALIZATION ..........
|
||
|
740 ITS = ITS + 1
|
||
|
NORM = 0.0E0
|
||
|
NORMV = 0.0E0
|
||
|
C
|
||
|
DO 780 I = 1, UK
|
||
|
IF (ILAMBD .EQ. 0.0E0) X = ABS(RV1(I))
|
||
|
IF (ILAMBD .NE. 0.0E0) X = PYTHAG(RV1(I),RV2(I))
|
||
|
IF (NORMV .GE. X) GO TO 760
|
||
|
NORMV = X
|
||
|
J = I
|
||
|
760 NORM = NORM + X
|
||
|
780 CONTINUE
|
||
|
C
|
||
|
IF (NORM .LT. GROWTO) GO TO 840
|
||
|
C .......... ACCEPT VECTOR ..........
|
||
|
X = RV1(J)
|
||
|
IF (ILAMBD .EQ. 0.0E0) X = 1.0E0 / X
|
||
|
IF (ILAMBD .NE. 0.0E0) Y = RV2(J)
|
||
|
C
|
||
|
DO 820 I = 1, UK
|
||
|
IF (ILAMBD .NE. 0.0E0) GO TO 800
|
||
|
Z(I,S) = RV1(I) * X
|
||
|
GO TO 820
|
||
|
800 CALL CDIV(RV1(I),RV2(I),X,Y,Z(I,S-1),Z(I,S))
|
||
|
820 CONTINUE
|
||
|
C
|
||
|
IF (UK .EQ. N) GO TO 940
|
||
|
J = UK + 1
|
||
|
GO TO 900
|
||
|
C .......... IN-LINE PROCEDURE FOR CHOOSING
|
||
|
C A NEW STARTING VECTOR ..........
|
||
|
840 IF (ITS .GE. UK) GO TO 880
|
||
|
X = UKROOT
|
||
|
Y = EPS3 / (X + 1.0E0)
|
||
|
RV1(1) = EPS3
|
||
|
C
|
||
|
DO 860 I = 2, UK
|
||
|
860 RV1(I) = Y
|
||
|
C
|
||
|
J = UK - ITS + 1
|
||
|
RV1(J) = RV1(J) - EPS3 * X
|
||
|
IF (ILAMBD .EQ. 0.0E0) GO TO 440
|
||
|
GO TO 660
|
||
|
C .......... SET ERROR -- UNACCEPTED EIGENVECTOR ..........
|
||
|
880 J = 1
|
||
|
IERR = -K
|
||
|
C .......... SET REMAINING VECTOR COMPONENTS TO ZERO ..........
|
||
|
900 DO 920 I = J, N
|
||
|
Z(I,S) = 0.0E0
|
||
|
IF (ILAMBD .NE. 0.0E0) Z(I,S-1) = 0.0E0
|
||
|
920 CONTINUE
|
||
|
C
|
||
|
940 S = S + 1
|
||
|
960 IF (IP .EQ. (-1)) IP = 0
|
||
|
IF (IP .EQ. 1) IP = -1
|
||
|
980 CONTINUE
|
||
|
C
|
||
|
GO TO 1001
|
||
|
C .......... SET ERROR -- UNDERESTIMATE OF EIGENVECTOR
|
||
|
C SPACE REQUIRED ..........
|
||
|
1000 IF (IERR .NE. 0) IERR = IERR - N
|
||
|
IF (IERR .EQ. 0) IERR = -(2 * N + 1)
|
||
|
1001 M = S - 1 - ABS(IP)
|
||
|
RETURN
|
||
|
END
|