mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-04 07:53:38 +01:00
271 lines
7.9 KiB
FortranFixed
271 lines
7.9 KiB
FortranFixed
|
*DECK IPSORT
|
||
|
SUBROUTINE IPSORT (IX, N, IPERM, KFLAG, IER)
|
||
|
C***BEGIN PROLOGUE IPSORT
|
||
|
C***PURPOSE Return the permutation vector generated by sorting a given
|
||
|
C array and, optionally, rearrange the elements of the array.
|
||
|
C The array may be sorted in increasing or decreasing order.
|
||
|
C A slightly modified quicksort algorithm is used.
|
||
|
C***LIBRARY SLATEC
|
||
|
C***CATEGORY N6A1A, N6A2A
|
||
|
C***TYPE INTEGER (SPSORT-S, DPSORT-D, IPSORT-I, HPSORT-H)
|
||
|
C***KEYWORDS NUMBER SORTING, PASSIVE SORTING, SINGLETON QUICKSORT, SORT
|
||
|
C***AUTHOR Jones, R. E., (SNLA)
|
||
|
C Kahaner, D. K., (NBS)
|
||
|
C Rhoads, G. S., (NBS)
|
||
|
C Wisniewski, J. A., (SNLA)
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C IPSORT returns the permutation vector IPERM generated by sorting
|
||
|
C the array IX and, optionally, rearranges the values in IX. IX may
|
||
|
C be sorted in increasing or decreasing order. A slightly modified
|
||
|
C quicksort algorithm is used.
|
||
|
C
|
||
|
C IPERM is such that IX(IPERM(I)) is the Ith value in the
|
||
|
C rearrangement of IX. IPERM may be applied to another array by
|
||
|
C calling IPPERM, SPPERM, DPPERM or HPPERM.
|
||
|
C
|
||
|
C The main difference between IPSORT and its active sorting equivalent
|
||
|
C ISORT is that the data are referenced indirectly rather than
|
||
|
C directly. Therefore, IPSORT should require approximately twice as
|
||
|
C long to execute as ISORT. However, IPSORT is more general.
|
||
|
C
|
||
|
C Description of Parameters
|
||
|
C IX - input/output -- integer array of values to be sorted.
|
||
|
C If ABS(KFLAG) = 2, then the values in IX will be
|
||
|
C rearranged on output; otherwise, they are unchanged.
|
||
|
C N - input -- number of values in array IX to be sorted.
|
||
|
C IPERM - output -- permutation array such that IPERM(I) is the
|
||
|
C index of the value in the original order of the
|
||
|
C IX array that is in the Ith location in the sorted
|
||
|
C order.
|
||
|
C KFLAG - input -- control parameter:
|
||
|
C = 2 means return the permutation vector resulting from
|
||
|
C sorting IX in increasing order and sort IX also.
|
||
|
C = 1 means return the permutation vector resulting from
|
||
|
C sorting IX in increasing order and do not sort IX.
|
||
|
C = -1 means return the permutation vector resulting from
|
||
|
C sorting IX in decreasing order and do not sort IX.
|
||
|
C = -2 means return the permutation vector resulting from
|
||
|
C sorting IX in decreasing order and sort IX also.
|
||
|
C IER - output -- error indicator:
|
||
|
C = 0 if no error,
|
||
|
C = 1 if N is zero or negative,
|
||
|
C = 2 if KFLAG is not 2, 1, -1, or -2.
|
||
|
C***REFERENCES R. C. Singleton, Algorithm 347, An efficient algorithm
|
||
|
C for sorting with minimal storage, Communications of
|
||
|
C the ACM, 12, 3 (1969), pp. 185-187.
|
||
|
C***ROUTINES CALLED XERMSG
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 761101 DATE WRITTEN
|
||
|
C 761118 Modified by John A. Wisniewski to use the Singleton
|
||
|
C quicksort algorithm.
|
||
|
C 810801 Further modified by David K. Kahaner.
|
||
|
C 870423 Modified by Gregory S. Rhoads for passive sorting with the
|
||
|
C option for the rearrangement of the original data.
|
||
|
C 890620 Algorithm for rearranging the data vector corrected by R.
|
||
|
C Boisvert.
|
||
|
C 890622 Prologue upgraded to Version 4.0 style by D. Lozier.
|
||
|
C 891128 Error when KFLAG.LT.0 and N=1 corrected by R. Boisvert.
|
||
|
C 920507 Modified by M. McClain to revise prologue text.
|
||
|
C 920818 Declarations section rebuilt and code restructured to use
|
||
|
C IF-THEN-ELSE-ENDIF. (SMR, WRB)
|
||
|
C***END PROLOGUE IPSORT
|
||
|
C .. Scalar Arguments ..
|
||
|
INTEGER IER, KFLAG, N
|
||
|
C .. Array Arguments ..
|
||
|
INTEGER IPERM(*), IX(*)
|
||
|
C .. Local Scalars ..
|
||
|
REAL R
|
||
|
INTEGER I, IJ, INDX, INDX0, ISTRT, ITEMP, J, K, KK, L, LM, LMT, M,
|
||
|
+ NN
|
||
|
C .. Local Arrays ..
|
||
|
INTEGER IL(21), IU(21)
|
||
|
C .. External Subroutines ..
|
||
|
EXTERNAL XERMSG
|
||
|
C .. Intrinsic Functions ..
|
||
|
INTRINSIC ABS, INT
|
||
|
C***FIRST EXECUTABLE STATEMENT IPSORT
|
||
|
IER = 0
|
||
|
NN = N
|
||
|
IF (NN .LT. 1) THEN
|
||
|
IER = 1
|
||
|
CALL XERMSG ('SLATEC', 'IPSORT',
|
||
|
+ 'The number of values to be sorted, N, is not positive.',
|
||
|
+ IER, 1)
|
||
|
RETURN
|
||
|
ENDIF
|
||
|
KK = ABS(KFLAG)
|
||
|
IF (KK.NE.1 .AND. KK.NE.2) THEN
|
||
|
IER = 2
|
||
|
CALL XERMSG ('SLATEC', 'IPSORT',
|
||
|
+ 'The sort control parameter, KFLAG, is not 2, 1, -1, or -2.',
|
||
|
+ IER, 1)
|
||
|
RETURN
|
||
|
ENDIF
|
||
|
C
|
||
|
C Initialize permutation vector
|
||
|
C
|
||
|
DO 10 I=1,NN
|
||
|
IPERM(I) = I
|
||
|
10 CONTINUE
|
||
|
C
|
||
|
C Return if only one value is to be sorted
|
||
|
C
|
||
|
IF (NN .EQ. 1) RETURN
|
||
|
C
|
||
|
C Alter array IX to get decreasing order if needed
|
||
|
C
|
||
|
IF (KFLAG .LE. -1) THEN
|
||
|
DO 20 I=1,NN
|
||
|
IX(I) = -IX(I)
|
||
|
20 CONTINUE
|
||
|
ENDIF
|
||
|
C
|
||
|
C Sort IX only
|
||
|
C
|
||
|
M = 1
|
||
|
I = 1
|
||
|
J = NN
|
||
|
R = .375E0
|
||
|
C
|
||
|
30 IF (I .EQ. J) GO TO 80
|
||
|
IF (R .LE. 0.5898437E0) THEN
|
||
|
R = R+3.90625E-2
|
||
|
ELSE
|
||
|
R = R-0.21875E0
|
||
|
ENDIF
|
||
|
C
|
||
|
40 K = I
|
||
|
C
|
||
|
C Select a central element of the array and save it in location L
|
||
|
C
|
||
|
IJ = I + INT((J-I)*R)
|
||
|
LM = IPERM(IJ)
|
||
|
C
|
||
|
C If first element of array is greater than LM, interchange with LM
|
||
|
C
|
||
|
IF (IX(IPERM(I)) .GT. IX(LM)) THEN
|
||
|
IPERM(IJ) = IPERM(I)
|
||
|
IPERM(I) = LM
|
||
|
LM = IPERM(IJ)
|
||
|
ENDIF
|
||
|
L = J
|
||
|
C
|
||
|
C If last element of array is less than LM, interchange with LM
|
||
|
C
|
||
|
IF (IX(IPERM(J)) .LT. IX(LM)) THEN
|
||
|
IPERM(IJ) = IPERM(J)
|
||
|
IPERM(J) = LM
|
||
|
LM = IPERM(IJ)
|
||
|
C
|
||
|
C If first element of array is greater than LM, interchange
|
||
|
C with LM
|
||
|
C
|
||
|
IF (IX(IPERM(I)) .GT. IX(LM)) THEN
|
||
|
IPERM(IJ) = IPERM(I)
|
||
|
IPERM(I) = LM
|
||
|
LM = IPERM(IJ)
|
||
|
ENDIF
|
||
|
ENDIF
|
||
|
GO TO 60
|
||
|
50 LMT = IPERM(L)
|
||
|
IPERM(L) = IPERM(K)
|
||
|
IPERM(K) = LMT
|
||
|
C
|
||
|
C Find an element in the second half of the array which is smaller
|
||
|
C than LM
|
||
|
C
|
||
|
60 L = L-1
|
||
|
IF (IX(IPERM(L)) .GT. IX(LM)) GO TO 60
|
||
|
C
|
||
|
C Find an element in the first half of the array which is greater
|
||
|
C than LM
|
||
|
C
|
||
|
70 K = K+1
|
||
|
IF (IX(IPERM(K)) .LT. IX(LM)) GO TO 70
|
||
|
C
|
||
|
C Interchange these elements
|
||
|
C
|
||
|
IF (K .LE. L) GO TO 50
|
||
|
C
|
||
|
C Save upper and lower subscripts of the array yet to be sorted
|
||
|
C
|
||
|
IF (L-I .GT. J-K) THEN
|
||
|
IL(M) = I
|
||
|
IU(M) = L
|
||
|
I = K
|
||
|
M = M+1
|
||
|
ELSE
|
||
|
IL(M) = K
|
||
|
IU(M) = J
|
||
|
J = L
|
||
|
M = M+1
|
||
|
ENDIF
|
||
|
GO TO 90
|
||
|
C
|
||
|
C Begin again on another portion of the unsorted array
|
||
|
C
|
||
|
80 M = M-1
|
||
|
IF (M .EQ. 0) GO TO 120
|
||
|
I = IL(M)
|
||
|
J = IU(M)
|
||
|
C
|
||
|
90 IF (J-I .GE. 1) GO TO 40
|
||
|
IF (I .EQ. 1) GO TO 30
|
||
|
I = I-1
|
||
|
C
|
||
|
100 I = I+1
|
||
|
IF (I .EQ. J) GO TO 80
|
||
|
LM = IPERM(I+1)
|
||
|
IF (IX(IPERM(I)) .LE. IX(LM)) GO TO 100
|
||
|
K = I
|
||
|
C
|
||
|
110 IPERM(K+1) = IPERM(K)
|
||
|
K = K-1
|
||
|
C
|
||
|
IF (IX(LM) .LT. IX(IPERM(K))) GO TO 110
|
||
|
IPERM(K+1) = LM
|
||
|
GO TO 100
|
||
|
C
|
||
|
C Clean up
|
||
|
C
|
||
|
120 IF (KFLAG .LE. -1) THEN
|
||
|
DO 130 I=1,NN
|
||
|
IX(I) = -IX(I)
|
||
|
130 CONTINUE
|
||
|
ENDIF
|
||
|
C
|
||
|
C Rearrange the values of IX if desired
|
||
|
C
|
||
|
IF (KK .EQ. 2) THEN
|
||
|
C
|
||
|
C Use the IPERM vector as a flag.
|
||
|
C If IPERM(I) < 0, then the I-th value is in correct location
|
||
|
C
|
||
|
DO 150 ISTRT=1,NN
|
||
|
IF (IPERM(ISTRT) .GE. 0) THEN
|
||
|
INDX = ISTRT
|
||
|
INDX0 = INDX
|
||
|
ITEMP = IX(ISTRT)
|
||
|
140 IF (IPERM(INDX) .GT. 0) THEN
|
||
|
IX(INDX) = IX(IPERM(INDX))
|
||
|
INDX0 = INDX
|
||
|
IPERM(INDX) = -IPERM(INDX)
|
||
|
INDX = ABS(IPERM(INDX))
|
||
|
GO TO 140
|
||
|
ENDIF
|
||
|
IX(INDX0) = ITEMP
|
||
|
ENDIF
|
||
|
150 CONTINUE
|
||
|
C
|
||
|
C Revert the signs of the IPERM values
|
||
|
C
|
||
|
DO 160 I=1,NN
|
||
|
IPERM(I) = -IPERM(I)
|
||
|
160 CONTINUE
|
||
|
C
|
||
|
ENDIF
|
||
|
C
|
||
|
RETURN
|
||
|
END
|