mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-04 07:53:38 +01:00
240 lines
10 KiB
FortranFixed
240 lines
10 KiB
FortranFixed
|
*DECK ISDOMN
|
||
|
INTEGER FUNCTION ISDOMN (N, B, X, NELT, IA, JA, A, ISYM, MSOLVE,
|
||
|
+ NSAVE, ITOL, TOL, ITMAX, ITER, ERR, IERR, IUNIT, R, Z, P, AP,
|
||
|
+ EMAP, DZ, CSAV, RWORK, IWORK, AK, BNRM, SOLNRM)
|
||
|
C***BEGIN PROLOGUE ISDOMN
|
||
|
C***SUBSIDIARY
|
||
|
C***PURPOSE Preconditioned Orthomin Stop Test.
|
||
|
C This routine calculates the stop test for the Orthomin
|
||
|
C iteration scheme. It returns a non-zero if the error
|
||
|
C estimate (the type of which is determined by ITOL) is
|
||
|
C less than the user specified tolerance TOL.
|
||
|
C***LIBRARY SLATEC (SLAP)
|
||
|
C***CATEGORY D2A4, D2B4
|
||
|
C***TYPE DOUBLE PRECISION (ISSOMN-S, ISDOMN-D)
|
||
|
C***KEYWORDS ITERATIVE PRECONDITION, NON-SYMMETRIC LINEAR SYSTEM,
|
||
|
C ORTHOMIN, SLAP, SPARSE, STOP TEST
|
||
|
C***AUTHOR Greenbaum, Anne, (Courant Institute)
|
||
|
C Seager, Mark K., (LLNL)
|
||
|
C Lawrence Livermore National Laboratory
|
||
|
C PO BOX 808, L-60
|
||
|
C Livermore, CA 94550 (510) 423-3141
|
||
|
C seager@llnl.gov
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C *Usage:
|
||
|
C INTEGER N, NELT, IA(NELT), JA(NELT), ISYM, NSAVE, ITOL, ITMAX
|
||
|
C INTEGER ITER, IERR, IUNIT, IWORK(USER DEFINED)
|
||
|
C DOUBLE PRECISION B(N), X(N), A(NELT), TOL, ERR, R(N), Z(N)
|
||
|
C DOUBLE PRECISION P(N,0:NSAVE), AP(N,0:NSAVE), EMAP(N,0:NSAVE)
|
||
|
C DOUBLE PRECISION DZ(N), CSAV(NSAVE), RWORK(USER DEFINED), AK
|
||
|
C DOUBLE PRECISION BNRM, SOLNRM
|
||
|
C EXTERNAL MSOLVE
|
||
|
C
|
||
|
C IF( ISDOMN(N, B, X, NELT, IA, JA, A, ISYM, MSOLVE, NSAVE,
|
||
|
C $ ITOL, TOL, ITMAX, ITER, ERR, IERR, IUNIT, R, Z, P, AP,
|
||
|
C $ EMAP, DZ, CSAV, RWORK, IWORK, AK, BNRM, SOLNRM)
|
||
|
C $ .NE.0 ) THEN ITERATION CONVERGED
|
||
|
C
|
||
|
C *Arguments:
|
||
|
C N :IN Integer.
|
||
|
C Order of the matrix.
|
||
|
C B :IN Double Precision B(N).
|
||
|
C Right-hand side vector.
|
||
|
C X :IN Double Precision X(N).
|
||
|
C On input X is your initial guess for solution vector.
|
||
|
C On output X is the final approximate solution.
|
||
|
C NELT :IN Integer.
|
||
|
C Number of Non-Zeros stored in A.
|
||
|
C IA :IN Integer IA(NELT).
|
||
|
C JA :IN Integer JA(NELT).
|
||
|
C A :IN Double Precision A(NELT).
|
||
|
C These arrays should hold the matrix A in either the SLAP
|
||
|
C Triad format or the SLAP Column format. See "Description"
|
||
|
C in the DSDOMN or DSLUOM prologue.
|
||
|
C ISYM :IN Integer.
|
||
|
C Flag to indicate symmetric storage format.
|
||
|
C If ISYM=0, all non-zero entries of the matrix are stored.
|
||
|
C If ISYM=1, the matrix is symmetric, and only the upper
|
||
|
C or lower triangle of the matrix is stored.
|
||
|
C MSOLVE :EXT External.
|
||
|
C Name of a routine which solves a linear system MZ = R for
|
||
|
C Z given R with the preconditioning matrix M (M is supplied via
|
||
|
C RWORK and IWORK arrays). The name of the MSOLVE routine must
|
||
|
C be declared external in the calling program. The calling
|
||
|
C sequence to MSOLVE is:
|
||
|
C CALL MSOLVE(N, R, Z, NELT, IA, JA, A, ISYM, RWORK, IWORK)
|
||
|
C Where N is the number of unknowns, R is the right-hand side
|
||
|
C vector and Z is the solution upon return. NELT, IA, JA, A and
|
||
|
C ISYM are defined as above. RWORK is a double precision array
|
||
|
C that can be used to pass necessary preconditioning information
|
||
|
C and/or workspace to MSOLVE. IWORK is an integer work array
|
||
|
C for the same purpose as RWORK.
|
||
|
C NSAVE :IN Integer.
|
||
|
C Number of direction vectors to save and orthogonalize against.
|
||
|
C ITOL :IN Integer.
|
||
|
C Flag to indicate type of convergence criterion.
|
||
|
C If ITOL=1, iteration stops when the 2-norm of the residual
|
||
|
C divided by the 2-norm of the right-hand side is less than TOL.
|
||
|
C If ITOL=2, iteration stops when the 2-norm of M-inv times the
|
||
|
C residual divided by the 2-norm of M-inv times the right hand
|
||
|
C side is less than TOL, where M-inv is the inverse of the
|
||
|
C diagonal of A.
|
||
|
C ITOL=11 is often useful for checking and comparing different
|
||
|
C routines. For this case, the user must supply the "exact"
|
||
|
C solution or a very accurate approximation (one with an error
|
||
|
C much less than TOL) through a common block,
|
||
|
C COMMON /DSLBLK/ SOLN( )
|
||
|
C If ITOL=11, iteration stops when the 2-norm of the difference
|
||
|
C between the iterative approximation and the user-supplied
|
||
|
C solution divided by the 2-norm of the user-supplied solution
|
||
|
C is less than TOL. Note that this requires the user to set up
|
||
|
C the "COMMON /DSLBLK/ SOLN(LENGTH)" in the calling routine.
|
||
|
C The routine with this declaration should be loaded before the
|
||
|
C stop test so that the correct length is used by the loader.
|
||
|
C This procedure is not standard Fortran and may not work
|
||
|
C correctly on your system (although it has worked on every
|
||
|
C system the authors have tried). If ITOL is not 11 then this
|
||
|
C common block is indeed standard Fortran.
|
||
|
C TOL :IN Double Precision.
|
||
|
C Convergence criterion, as described above.
|
||
|
C ITMAX :IN Integer.
|
||
|
C Maximum number of iterations.
|
||
|
C ITER :IN Integer.
|
||
|
C Current iteration count. (Must be zero on first call.)
|
||
|
C ERR :OUT Double Precision.
|
||
|
C Error estimate of error in final approximate solution, as
|
||
|
C defined by ITOL.
|
||
|
C IERR :OUT Integer.
|
||
|
C Error flag. IERR is set to 3 if ITOL is not one of the
|
||
|
C acceptable values, see above.
|
||
|
C IUNIT :IN Integer.
|
||
|
C Unit number on which to write the error at each iteration,
|
||
|
C if this is desired for monitoring convergence. If unit
|
||
|
C number is 0, no writing will occur.
|
||
|
C R :IN Double Precision R(N).
|
||
|
C The residual R = B-AX.
|
||
|
C Z :WORK Double Precision Z(N).
|
||
|
C P :IN Double Precision P(N,0:NSAVE).
|
||
|
C Workspace used to hold the conjugate direction vector(s).
|
||
|
C AP :IN Double Precision AP(N,0:NSAVE).
|
||
|
C Workspace used to hold the matrix A times the P vector(s).
|
||
|
C EMAP :IN Double Precision EMAP(N,0:NSAVE).
|
||
|
C Workspace used to hold M-inv times the AP vector(s).
|
||
|
C DZ :WORK Double Precision DZ(N).
|
||
|
C Workspace.
|
||
|
C CSAV :DUMMY Double Precision CSAV(NSAVE)
|
||
|
C Reserved for future use.
|
||
|
C RWORK :WORK Double Precision RWORK(USER DEFINED).
|
||
|
C Double Precision array that can be used for workspace in
|
||
|
C MSOLVE.
|
||
|
C IWORK :WORK Integer IWORK(USER DEFINED).
|
||
|
C Integer array that can be used for workspace in MSOLVE.
|
||
|
C AK :IN Double Precision.
|
||
|
C Current iterate Orthomin iteration parameter.
|
||
|
C BNRM :OUT Double Precision.
|
||
|
C Current solution B-norm, if ITOL = 1 or 2.
|
||
|
C SOLNRM :OUT Double Precision.
|
||
|
C True solution norm, if ITOL = 11.
|
||
|
C
|
||
|
C *Function Return Values:
|
||
|
C 0 : Error estimate (determined by ITOL) is *NOT* less than the
|
||
|
C specified tolerance, TOL. The iteration must continue.
|
||
|
C 1 : Error estimate (determined by ITOL) is less than the
|
||
|
C specified tolerance, TOL. The iteration can be considered
|
||
|
C complete.
|
||
|
C
|
||
|
C *Cautions:
|
||
|
C This routine will attempt to write to the Fortran logical output
|
||
|
C unit IUNIT, if IUNIT .ne. 0. Thus, the user must make sure that
|
||
|
C this logical unit is attached to a file or terminal before calling
|
||
|
C this routine with a non-zero value for IUNIT. This routine does
|
||
|
C not check for the validity of a non-zero IUNIT unit number.
|
||
|
C
|
||
|
C***SEE ALSO DOMN, DSDOMN, DSLUOM
|
||
|
C***ROUTINES CALLED D1MACH, DNRM2
|
||
|
C***COMMON BLOCKS DSLBLK
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 890404 DATE WRITTEN
|
||
|
C 890404 Previous REVISION DATE
|
||
|
C 890915 Made changes requested at July 1989 CML Meeting. (MKS)
|
||
|
C 890922 Numerous changes to prologue to make closer to SLATEC
|
||
|
C standard. (FNF)
|
||
|
C 890929 Numerous changes to reduce SP/DP differences. (FNF)
|
||
|
C 891003 Removed C***REFER TO line, per MKS.
|
||
|
C 910411 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C 910502 Removed MSOLVE from ROUTINES CALLED list. (FNF)
|
||
|
C 910506 Made subsidiary to DOMN. (FNF)
|
||
|
C 920407 COMMON BLOCK renamed DSLBLK. (WRB)
|
||
|
C 920511 Added complete declaration section. (WRB)
|
||
|
C 920930 Corrected to not print AK when ITER=0. (FNF)
|
||
|
C 921026 Changed 1.0E10 to D1MACH(2) and corrected D to E in
|
||
|
C output format. (FNF)
|
||
|
C 921113 Corrected C***CATEGORY line. (FNF)
|
||
|
C***END PROLOGUE ISDOMN
|
||
|
C .. Scalar Arguments ..
|
||
|
DOUBLE PRECISION AK, BNRM, ERR, SOLNRM, TOL
|
||
|
INTEGER IERR, ISYM, ITER, ITMAX, ITOL, IUNIT, N, NELT, NSAVE
|
||
|
C .. Array Arguments ..
|
||
|
DOUBLE PRECISION A(NELT), AP(N,0:NSAVE), B(N), CSAV(NSAVE),
|
||
|
+ DZ(N), EMAP(N,0:NSAVE), P(N,0:NSAVE), R(N),
|
||
|
+ RWORK(*), X(N), Z(N)
|
||
|
INTEGER IA(NELT), IWORK(*), JA(NELT)
|
||
|
C .. Subroutine Arguments ..
|
||
|
EXTERNAL MSOLVE
|
||
|
C .. Arrays in Common ..
|
||
|
DOUBLE PRECISION SOLN(1)
|
||
|
C .. Local Scalars ..
|
||
|
INTEGER I
|
||
|
C .. External Functions ..
|
||
|
DOUBLE PRECISION D1MACH, DNRM2
|
||
|
EXTERNAL D1MACH, DNRM2
|
||
|
C .. Common blocks ..
|
||
|
COMMON /DSLBLK/ SOLN
|
||
|
C***FIRST EXECUTABLE STATEMENT ISDOMN
|
||
|
ISDOMN = 0
|
||
|
C
|
||
|
IF( ITOL.EQ.1 ) THEN
|
||
|
C err = ||Residual||/||RightHandSide|| (2-Norms).
|
||
|
IF(ITER .EQ. 0) BNRM = DNRM2(N, B, 1)
|
||
|
ERR = DNRM2(N, R, 1)/BNRM
|
||
|
ELSE IF( ITOL.EQ.2 ) THEN
|
||
|
C -1 -1
|
||
|
C err = ||M Residual||/||M RightHandSide|| (2-Norms).
|
||
|
IF(ITER .EQ. 0) THEN
|
||
|
CALL MSOLVE(N, B, DZ, NELT, IA, JA, A, ISYM, RWORK, IWORK)
|
||
|
BNRM = DNRM2(N, DZ, 1)
|
||
|
ENDIF
|
||
|
ERR = DNRM2(N, Z, 1)/BNRM
|
||
|
ELSE IF( ITOL.EQ.11 ) THEN
|
||
|
C err = ||x-TrueSolution||/||TrueSolution|| (2-Norms).
|
||
|
IF(ITER .EQ. 0) SOLNRM = DNRM2(N, SOLN, 1)
|
||
|
DO 10 I = 1, N
|
||
|
DZ(I) = X(I) - SOLN(I)
|
||
|
10 CONTINUE
|
||
|
ERR = DNRM2(N, DZ, 1)/SOLNRM
|
||
|
ELSE
|
||
|
C
|
||
|
C If we get here ITOL is not one of the acceptable values.
|
||
|
ERR = D1MACH(2)
|
||
|
IERR = 3
|
||
|
ENDIF
|
||
|
C
|
||
|
IF(IUNIT .NE. 0) THEN
|
||
|
IF( ITER.EQ.0 ) THEN
|
||
|
WRITE(IUNIT,1000) NSAVE, N, ITOL
|
||
|
WRITE(IUNIT,1010) ITER, ERR
|
||
|
ELSE
|
||
|
WRITE(IUNIT,1010) ITER, ERR, AK
|
||
|
ENDIF
|
||
|
ENDIF
|
||
|
IF(ERR .LE. TOL) ISDOMN = 1
|
||
|
C
|
||
|
RETURN
|
||
|
1000 FORMAT(' Preconditioned Orthomin(',I3,') for ',
|
||
|
$ 'N, ITOL = ',I5, I5,
|
||
|
$ /' ITER',' Error Estimate',' Alpha')
|
||
|
1010 FORMAT(1X,I4,1X,D16.7,1X,D16.7)
|
||
|
C------------- LAST LINE OF ISDOMN FOLLOWS ----------------------------
|
||
|
END
|