OpenLibm/slatec/minfit.f

358 lines
10 KiB
FortranFixed
Raw Normal View History

*DECK MINFIT
SUBROUTINE MINFIT (NM, M, N, A, W, IP, B, IERR, RV1)
C***BEGIN PROLOGUE MINFIT
C***PURPOSE Compute the singular value decomposition of a rectangular
C matrix and solve the related linear least squares problem.
C***LIBRARY SLATEC (EISPACK)
C***CATEGORY D9
C***TYPE SINGLE PRECISION (MINFIT-S)
C***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
C***AUTHOR Smith, B. T., et al.
C***DESCRIPTION
C
C This subroutine is a translation of the ALGOL procedure MINFIT,
C NUM. MATH. 14, 403-420(1970) by Golub and Reinsch.
C HANDBOOK FOR AUTO. COMP., VOL II-LINEAR ALGEBRA, 134-151(1971).
C
C This subroutine determines, towards the solution of the linear
C T
C system AX=B, the singular value decomposition A=USV of a real
C T
C M by N rectangular matrix, forming U B rather than U. Householder
C bidiagonalization and a variant of the QR algorithm are used.
C
C On INPUT
C
C NM must be set to the row dimension of the two-dimensional
C array parameters, A and B, as declared in the calling
C program dimension statement. Note that NM must be at least
C as large as the maximum of M and N. NM is an INTEGER
C variable.
C
C M is the number of rows of A and B. M is an INTEGER variable.
C
C N is the number of columns of A and the order of V. N is an
C INTEGER variable.
C
C A contains the rectangular coefficient matrix of the system.
C A is a two-dimensional REAL array, dimensioned A(NM,N).
C
C IP is the number of columns of B. IP can be zero.
C
C B contains the constant column matrix of the system if IP is
C not zero. Otherwise, B is not referenced. B is a two-
C dimensional REAL array, dimensioned B(NM,IP).
C
C On OUTPUT
C
C A has been overwritten by the matrix V (orthogonal) of the
C decomposition in its first N rows and columns. If an
C error exit is made, the columns of V corresponding to
C indices of correct singular values should be correct.
C
C W contains the N (non-negative) singular values of A (the
C diagonal elements of S). They are unordered. If an
C error exit is made, the singular values should be correct
C for indices IERR+1, IERR+2, ..., N. W is a one-dimensional
C REAL array, dimensioned W(N).
C
C T
C B has been overwritten by U B. If an error exit is made,
C T
C the rows of U B corresponding to indices of correct singular
C values should be correct.
C
C IERR is an INTEGER flag set to
C Zero for normal return,
C K if the K-th singular value has not been
C determined after 30 iterations.
C The singular values should be correct for
C indices IERR+1, IERR+2, ..., N.
C
C RV1 is a one-dimensional REAL array used for temporary storage,
C dimensioned RV1(N).
C
C Calls PYTHAG(A,B) for sqrt(A**2 + B**2).
C
C Questions and comments should be directed to B. S. Garbow,
C APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
C ------------------------------------------------------------------
C
C***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
C Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
C system Routines - EISPACK Guide, Springer-Verlag,
C 1976.
C***ROUTINES CALLED PYTHAG
C***REVISION HISTORY (YYMMDD)
C 760101 DATE WRITTEN
C 890531 Changed all specific intrinsics to generic. (WRB)
C 890831 Modified array declarations. (WRB)
C 890831 REVISION DATE from Version 3.2
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 920501 Reformatted the REFERENCES section. (WRB)
C***END PROLOGUE MINFIT
C
INTEGER I,J,K,L,M,N,II,IP,I1,KK,K1,LL,L1,M1,NM,ITS,IERR
REAL A(NM,*),W(*),B(NM,IP),RV1(*)
REAL C,F,G,H,S,X,Y,Z,SCALE,S1
REAL PYTHAG
C
C***FIRST EXECUTABLE STATEMENT MINFIT
IERR = 0
C .......... HOUSEHOLDER REDUCTION TO BIDIAGONAL FORM ..........
G = 0.0E0
SCALE = 0.0E0
S1 = 0.0E0
C
DO 300 I = 1, N
L = I + 1
RV1(I) = SCALE * G
G = 0.0E0
S = 0.0E0
SCALE = 0.0E0
IF (I .GT. M) GO TO 210
C
DO 120 K = I, M
120 SCALE = SCALE + ABS(A(K,I))
C
IF (SCALE .EQ. 0.0E0) GO TO 210
C
DO 130 K = I, M
A(K,I) = A(K,I) / SCALE
S = S + A(K,I)**2
130 CONTINUE
C
F = A(I,I)
G = -SIGN(SQRT(S),F)
H = F * G - S
A(I,I) = F - G
IF (I .EQ. N) GO TO 160
C
DO 150 J = L, N
S = 0.0E0
C
DO 140 K = I, M
140 S = S + A(K,I) * A(K,J)
C
F = S / H
C
DO 150 K = I, M
A(K,J) = A(K,J) + F * A(K,I)
150 CONTINUE
C
160 IF (IP .EQ. 0) GO TO 190
C
DO 180 J = 1, IP
S = 0.0E0
C
DO 170 K = I, M
170 S = S + A(K,I) * B(K,J)
C
F = S / H
C
DO 180 K = I, M
B(K,J) = B(K,J) + F * A(K,I)
180 CONTINUE
C
190 DO 200 K = I, M
200 A(K,I) = SCALE * A(K,I)
C
210 W(I) = SCALE * G
G = 0.0E0
S = 0.0E0
SCALE = 0.0E0
IF (I .GT. M .OR. I .EQ. N) GO TO 290
C
DO 220 K = L, N
220 SCALE = SCALE + ABS(A(I,K))
C
IF (SCALE .EQ. 0.0E0) GO TO 290
C
DO 230 K = L, N
A(I,K) = A(I,K) / SCALE
S = S + A(I,K)**2
230 CONTINUE
C
F = A(I,L)
G = -SIGN(SQRT(S),F)
H = F * G - S
A(I,L) = F - G
C
DO 240 K = L, N
240 RV1(K) = A(I,K) / H
C
IF (I .EQ. M) GO TO 270
C
DO 260 J = L, M
S = 0.0E0
C
DO 250 K = L, N
250 S = S + A(J,K) * A(I,K)
C
DO 260 K = L, N
A(J,K) = A(J,K) + S * RV1(K)
260 CONTINUE
C
270 DO 280 K = L, N
280 A(I,K) = SCALE * A(I,K)
C
290 S1 = MAX(S1,ABS(W(I))+ABS(RV1(I)))
300 CONTINUE
C .......... ACCUMULATION OF RIGHT-HAND TRANSFORMATIONS.
C FOR I=N STEP -1 UNTIL 1 DO -- ..........
DO 400 II = 1, N
I = N + 1 - II
IF (I .EQ. N) GO TO 390
IF (G .EQ. 0.0E0) GO TO 360
C
DO 320 J = L, N
C .......... DOUBLE DIVISION AVOIDS POSSIBLE UNDERFLOW ..........
320 A(J,I) = (A(I,J) / A(I,L)) / G
C
DO 350 J = L, N
S = 0.0E0
C
DO 340 K = L, N
340 S = S + A(I,K) * A(K,J)
C
DO 350 K = L, N
A(K,J) = A(K,J) + S * A(K,I)
350 CONTINUE
C
360 DO 380 J = L, N
A(I,J) = 0.0E0
A(J,I) = 0.0E0
380 CONTINUE
C
390 A(I,I) = 1.0E0
G = RV1(I)
L = I
400 CONTINUE
C
IF (M .GE. N .OR. IP .EQ. 0) GO TO 510
M1 = M + 1
C
DO 500 I = M1, N
C
DO 500 J = 1, IP
B(I,J) = 0.0E0
500 CONTINUE
C .......... DIAGONALIZATION OF THE BIDIAGONAL FORM ..........
510 CONTINUE
C .......... FOR K=N STEP -1 UNTIL 1 DO -- ..........
DO 700 KK = 1, N
K1 = N - KK
K = K1 + 1
ITS = 0
C .......... TEST FOR SPLITTING.
C FOR L=K STEP -1 UNTIL 1 DO -- ..........
520 DO 530 LL = 1, K
L1 = K - LL
L = L1 + 1
IF (S1 + ABS(RV1(L)) .EQ. S1) GO TO 565
C .......... RV1(1) IS ALWAYS ZERO, SO THERE IS NO EXIT
C THROUGH THE BOTTOM OF THE LOOP ..........
IF (S1 + ABS(W(L1)) .EQ. S1) GO TO 540
530 CONTINUE
C .......... CANCELLATION OF RV1(L) IF L GREATER THAN 1 ..........
540 C = 0.0E0
S = 1.0E0
C
DO 560 I = L, K
F = S * RV1(I)
RV1(I) = C * RV1(I)
IF (S1 + ABS(F) .EQ. S1) GO TO 565
G = W(I)
H = PYTHAG(F,G)
W(I) = H
C = G / H
S = -F / H
IF (IP .EQ. 0) GO TO 560
C
DO 550 J = 1, IP
Y = B(L1,J)
Z = B(I,J)
B(L1,J) = Y * C + Z * S
B(I,J) = -Y * S + Z * C
550 CONTINUE
C
560 CONTINUE
C .......... TEST FOR CONVERGENCE ..........
565 Z = W(K)
IF (L .EQ. K) GO TO 650
C .......... SHIFT FROM BOTTOM 2 BY 2 MINOR ..........
IF (ITS .EQ. 30) GO TO 1000
ITS = ITS + 1
X = W(L)
Y = W(K1)
G = RV1(K1)
H = RV1(K)
F = 0.5E0 * (((G + Z) / H) * ((G - Z) / Y) + Y / H - H / Y)
G = PYTHAG(F,1.0E0)
F = X - (Z / X) * Z + (H / X) * (Y / (F + SIGN(G,F)) - H)
C .......... NEXT QR TRANSFORMATION ..........
C = 1.0E0
S = 1.0E0
C
DO 600 I1 = L, K1
I = I1 + 1
G = RV1(I)
Y = W(I)
H = S * G
G = C * G
Z = PYTHAG(F,H)
RV1(I1) = Z
C = F / Z
S = H / Z
F = X * C + G * S
G = -X * S + G * C
H = Y * S
Y = Y * C
C
DO 570 J = 1, N
X = A(J,I1)
Z = A(J,I)
A(J,I1) = X * C + Z * S
A(J,I) = -X * S + Z * C
570 CONTINUE
C
Z = PYTHAG(F,H)
W(I1) = Z
C .......... ROTATION CAN BE ARBITRARY IF Z IS ZERO ..........
IF (Z .EQ. 0.0E0) GO TO 580
C = F / Z
S = H / Z
580 F = C * G + S * Y
X = -S * G + C * Y
IF (IP .EQ. 0) GO TO 600
C
DO 590 J = 1, IP
Y = B(I1,J)
Z = B(I,J)
B(I1,J) = Y * C + Z * S
B(I,J) = -Y * S + Z * C
590 CONTINUE
C
600 CONTINUE
C
RV1(L) = 0.0E0
RV1(K) = F
W(K) = X
GO TO 520
C .......... CONVERGENCE ..........
650 IF (Z .GE. 0.0E0) GO TO 700
C .......... W(K) IS MADE NON-NEGATIVE ..........
W(K) = -Z
C
DO 690 J = 1, N
690 A(J,K) = -A(J,K)
C
700 CONTINUE
C
GO TO 1001
C .......... SET ERROR -- NO CONVERGENCE TO A
C SINGULAR VALUE AFTER 30 ITERATIONS ..........
1000 IERR = K
1001 RETURN
END