OpenLibm/slatec/pchfe.f

309 lines
9.9 KiB
FortranFixed
Raw Normal View History

*DECK PCHFE
SUBROUTINE PCHFE (N, X, F, D, INCFD, SKIP, NE, XE, FE, IERR)
C***BEGIN PROLOGUE PCHFE
C***PURPOSE Evaluate a piecewise cubic Hermite function at an array of
C points. May be used by itself for Hermite interpolation,
C or as an evaluator for PCHIM or PCHIC.
C***LIBRARY SLATEC (PCHIP)
C***CATEGORY E3
C***TYPE SINGLE PRECISION (PCHFE-S, DPCHFE-D)
C***KEYWORDS CUBIC HERMITE EVALUATION, HERMITE INTERPOLATION, PCHIP,
C PIECEWISE CUBIC EVALUATION
C***AUTHOR Fritsch, F. N., (LLNL)
C Lawrence Livermore National Laboratory
C P.O. Box 808 (L-316)
C Livermore, CA 94550
C FTS 532-4275, (510) 422-4275
C***DESCRIPTION
C
C PCHFE: Piecewise Cubic Hermite Function Evaluator
C
C Evaluates the cubic Hermite function defined by N, X, F, D at
C the points XE(J), J=1(1)NE.
C
C To provide compatibility with PCHIM and PCHIC, includes an
C increment between successive values of the F- and D-arrays.
C
C ----------------------------------------------------------------------
C
C Calling sequence:
C
C PARAMETER (INCFD = ...)
C INTEGER N, NE, IERR
C REAL X(N), F(INCFD,N), D(INCFD,N), XE(NE), FE(NE)
C LOGICAL SKIP
C
C CALL PCHFE (N, X, F, D, INCFD, SKIP, NE, XE, FE, IERR)
C
C Parameters:
C
C N -- (input) number of data points. (Error return if N.LT.2 .)
C
C X -- (input) real array of independent variable values. The
C elements of X must be strictly increasing:
C X(I-1) .LT. X(I), I = 2(1)N.
C (Error return if not.)
C
C F -- (input) real array of function values. F(1+(I-1)*INCFD) is
C the value corresponding to X(I).
C
C D -- (input) real array of derivative values. D(1+(I-1)*INCFD) is
C the value corresponding to X(I).
C
C INCFD -- (input) increment between successive values in F and D.
C (Error return if INCFD.LT.1 .)
C
C SKIP -- (input/output) logical variable which should be set to
C .TRUE. if the user wishes to skip checks for validity of
C preceding parameters, or to .FALSE. otherwise.
C This will save time in case these checks have already
C been performed (say, in PCHIM or PCHIC).
C SKIP will be set to .TRUE. on normal return.
C
C NE -- (input) number of evaluation points. (Error return if
C NE.LT.1 .)
C
C XE -- (input) real array of points at which the function is to be
C evaluated.
C
C NOTES:
C 1. The evaluation will be most efficient if the elements
C of XE are increasing relative to X;
C that is, XE(J) .GE. X(I)
C implies XE(K) .GE. X(I), all K.GE.J .
C 2. If any of the XE are outside the interval [X(1),X(N)],
C values are extrapolated from the nearest extreme cubic,
C and a warning error is returned.
C
C FE -- (output) real array of values of the cubic Hermite function
C defined by N, X, F, D at the points XE.
C
C IERR -- (output) error flag.
C Normal return:
C IERR = 0 (no errors).
C Warning error:
C IERR.GT.0 means that extrapolation was performed at
C IERR points.
C "Recoverable" errors:
C IERR = -1 if N.LT.2 .
C IERR = -2 if INCFD.LT.1 .
C IERR = -3 if the X-array is not strictly increasing.
C IERR = -4 if NE.LT.1 .
C (The FE-array has not been changed in any of these cases.)
C NOTE: The above errors are checked in the order listed,
C and following arguments have **NOT** been validated.
C
C***REFERENCES (NONE)
C***ROUTINES CALLED CHFEV, XERMSG
C***REVISION HISTORY (YYMMDD)
C 811020 DATE WRITTEN
C 820803 Minor cosmetic changes for release 1.
C 870707 Minor cosmetic changes to prologue.
C 890531 Changed all specific intrinsics to generic. (WRB)
C 890831 Modified array declarations. (WRB)
C 890831 REVISION DATE from Version 3.2
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
C***END PROLOGUE PCHFE
C Programming notes:
C
C 1. To produce a double precision version, simply:
C a. Change PCHFE to DPCHFE, and CHFEV to DCHFEV, wherever they
C occur,
C b. Change the real declaration to double precision,
C
C 2. Most of the coding between the call to CHFEV and the end of
C the IR-loop could be eliminated if it were permissible to
C assume that XE is ordered relative to X.
C
C 3. CHFEV does not assume that X1 is less than X2. thus, it would
C be possible to write a version of PCHFE that assumes a strict-
C ly decreasing X-array by simply running the IR-loop backwards
C (and reversing the order of appropriate tests).
C
C 4. The present code has a minor bug, which I have decided is not
C worth the effort that would be required to fix it.
C If XE contains points in [X(N-1),X(N)], followed by points .LT.
C X(N-1), followed by points .GT.X(N), the extrapolation points
C will be counted (at least) twice in the total returned in IERR.
C
C DECLARE ARGUMENTS.
C
INTEGER N, INCFD, NE, IERR
REAL X(*), F(INCFD,*), D(INCFD,*), XE(*), FE(*)
LOGICAL SKIP
C
C DECLARE LOCAL VARIABLES.
C
INTEGER I, IERC, IR, J, JFIRST, NEXT(2), NJ
C
C VALIDITY-CHECK ARGUMENTS.
C
C***FIRST EXECUTABLE STATEMENT PCHFE
IF (SKIP) GO TO 5
C
IF ( N.LT.2 ) GO TO 5001
IF ( INCFD.LT.1 ) GO TO 5002
DO 1 I = 2, N
IF ( X(I).LE.X(I-1) ) GO TO 5003
1 CONTINUE
C
C FUNCTION DEFINITION IS OK, GO ON.
C
5 CONTINUE
IF ( NE.LT.1 ) GO TO 5004
IERR = 0
SKIP = .TRUE.
C
C LOOP OVER INTERVALS. ( INTERVAL INDEX IS IL = IR-1 . )
C ( INTERVAL IS X(IL).LE.X.LT.X(IR) . )
JFIRST = 1
IR = 2
10 CONTINUE
C
C SKIP OUT OF LOOP IF HAVE PROCESSED ALL EVALUATION POINTS.
C
IF (JFIRST .GT. NE) GO TO 5000
C
C LOCATE ALL POINTS IN INTERVAL.
C
DO 20 J = JFIRST, NE
IF (XE(J) .GE. X(IR)) GO TO 30
20 CONTINUE
J = NE + 1
GO TO 40
C
C HAVE LOCATED FIRST POINT BEYOND INTERVAL.
C
30 CONTINUE
IF (IR .EQ. N) J = NE + 1
C
40 CONTINUE
NJ = J - JFIRST
C
C SKIP EVALUATION IF NO POINTS IN INTERVAL.
C
IF (NJ .EQ. 0) GO TO 50
C
C EVALUATE CUBIC AT XE(I), I = JFIRST (1) J-1 .
C
C ----------------------------------------------------------------
CALL CHFEV (X(IR-1),X(IR), F(1,IR-1),F(1,IR), D(1,IR-1),D(1,IR),
* NJ, XE(JFIRST), FE(JFIRST), NEXT, IERC)
C ----------------------------------------------------------------
IF (IERC .LT. 0) GO TO 5005
C
IF (NEXT(2) .EQ. 0) GO TO 42
C IF (NEXT(2) .GT. 0) THEN
C IN THE CURRENT SET OF XE-POINTS, THERE ARE NEXT(2) TO THE
C RIGHT OF X(IR).
C
IF (IR .LT. N) GO TO 41
C IF (IR .EQ. N) THEN
C THESE ARE ACTUALLY EXTRAPOLATION POINTS.
IERR = IERR + NEXT(2)
GO TO 42
41 CONTINUE
C ELSE
C WE SHOULD NEVER HAVE GOTTEN HERE.
GO TO 5005
C ENDIF
C ENDIF
42 CONTINUE
C
IF (NEXT(1) .EQ. 0) GO TO 49
C IF (NEXT(1) .GT. 0) THEN
C IN THE CURRENT SET OF XE-POINTS, THERE ARE NEXT(1) TO THE
C LEFT OF X(IR-1).
C
IF (IR .GT. 2) GO TO 43
C IF (IR .EQ. 2) THEN
C THESE ARE ACTUALLY EXTRAPOLATION POINTS.
IERR = IERR + NEXT(1)
GO TO 49
43 CONTINUE
C ELSE
C XE IS NOT ORDERED RELATIVE TO X, SO MUST ADJUST
C EVALUATION INTERVAL.
C
C FIRST, LOCATE FIRST POINT TO LEFT OF X(IR-1).
DO 44 I = JFIRST, J-1
IF (XE(I) .LT. X(IR-1)) GO TO 45
44 CONTINUE
C NOTE-- CANNOT DROP THROUGH HERE UNLESS THERE IS AN ERROR
C IN CHFEV.
GO TO 5005
C
45 CONTINUE
C RESET J. (THIS WILL BE THE NEW JFIRST.)
J = I
C
C NOW FIND OUT HOW FAR TO BACK UP IN THE X-ARRAY.
DO 46 I = 1, IR-1
IF (XE(J) .LT. X(I)) GO TO 47
46 CONTINUE
C NB-- CAN NEVER DROP THROUGH HERE, SINCE XE(J).LT.X(IR-1).
C
47 CONTINUE
C AT THIS POINT, EITHER XE(J) .LT. X(1)
C OR X(I-1) .LE. XE(J) .LT. X(I) .
C RESET IR, RECOGNIZING THAT IT WILL BE INCREMENTED BEFORE
C CYCLING.
IR = MAX(1, I-1)
C ENDIF
C ENDIF
49 CONTINUE
C
JFIRST = J
C
C END OF IR-LOOP.
C
50 CONTINUE
IR = IR + 1
IF (IR .LE. N) GO TO 10
C
C NORMAL RETURN.
C
5000 CONTINUE
RETURN
C
C ERROR RETURNS.
C
5001 CONTINUE
C N.LT.2 RETURN.
IERR = -1
CALL XERMSG ('SLATEC', 'PCHFE',
+ 'NUMBER OF DATA POINTS LESS THAN TWO', IERR, 1)
RETURN
C
5002 CONTINUE
C INCFD.LT.1 RETURN.
IERR = -2
CALL XERMSG ('SLATEC', 'PCHFE', 'INCREMENT LESS THAN ONE', IERR,
+ 1)
RETURN
C
5003 CONTINUE
C X-ARRAY NOT STRICTLY INCREASING.
IERR = -3
CALL XERMSG ('SLATEC', 'PCHFE', 'X-ARRAY NOT STRICTLY INCREASING'
+ , IERR, 1)
RETURN
C
5004 CONTINUE
C NE.LT.1 RETURN.
IERR = -4
CALL XERMSG ('SLATEC', 'PCHFE',
+ 'NUMBER OF EVALUATION POINTS LESS THAN ONE', IERR, 1)
RETURN
C
5005 CONTINUE
C ERROR RETURN FROM CHFEV.
C *** THIS CASE SHOULD NEVER OCCUR ***
IERR = -5
CALL XERMSG ('SLATEC', 'PCHFE',
+ 'ERROR RETURN FROM CHFEV -- FATAL', IERR, 2)
RETURN
C------------- LAST LINE OF PCHFE FOLLOWS ------------------------------
END