mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-19 19:22:28 +01:00
185 lines
6.6 KiB
FortranFixed
185 lines
6.6 KiB
FortranFixed
|
*DECK PJAC
|
||
|
SUBROUTINE PJAC (NEQ, Y, YH, NYH, EWT, FTEM, SAVF, WM, IWM, F,
|
||
|
+ JAC, RPAR, IPAR)
|
||
|
C***BEGIN PROLOGUE PJAC
|
||
|
C***SUBSIDIARY
|
||
|
C***PURPOSE Subsidiary to DEBDF
|
||
|
C***LIBRARY SLATEC
|
||
|
C***TYPE SINGLE PRECISION (PJAC-S, DPJAC-D)
|
||
|
C***AUTHOR Watts, H. A., (SNLA)
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C PJAC sets up the iteration matrix (involving the Jacobian) for the
|
||
|
C integration package DEBDF.
|
||
|
C
|
||
|
C***SEE ALSO DEBDF
|
||
|
C***ROUTINES CALLED SGBFA, SGEFA, VNWRMS
|
||
|
C***COMMON BLOCKS DEBDF1
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 800901 DATE WRITTEN
|
||
|
C 890531 Changed all specific intrinsics to generic. (WRB)
|
||
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C 900328 Added TYPE section. (WRB)
|
||
|
C 910722 Updated AUTHOR section. (ALS)
|
||
|
C 920422 Changed DIMENSION statement. (WRB)
|
||
|
C***END PROLOGUE PJAC
|
||
|
C
|
||
|
CLLL. OPTIMIZE
|
||
|
INTEGER NEQ, NYH, IWM, I, I1, I2, IER, II, IOWND, IOWNS, J, J1,
|
||
|
1 JJ, JSTART, KFLAG, L, LENP, MAXORD, MBA, MBAND, MEB1, MEBAND,
|
||
|
2 METH, MITER, ML, ML3, MU, N, NFE, NJE, NQ, NQU, NST
|
||
|
EXTERNAL F, JAC
|
||
|
REAL Y, YH, EWT, FTEM, SAVF, WM,
|
||
|
1 ROWND, ROWNS, EL0, H, HMIN, HMXI, HU, TN, UROUND,
|
||
|
2 CON, DI, FAC, HL0, R, R0, SRUR, YI, YJ, YJJ, VNWRMS
|
||
|
DIMENSION Y(*), YH(NYH,*), EWT(*), FTEM(*), SAVF(*),
|
||
|
1 WM(*), IWM(*), RPAR(*), IPAR(*)
|
||
|
COMMON /DEBDF1/ ROWND, ROWNS(210),
|
||
|
1 EL0, H, HMIN, HMXI, HU, TN, UROUND, IOWND(14), IOWNS(6),
|
||
|
2 IER, JSTART, KFLAG, L, METH, MITER, MAXORD, N, NQ, NST, NFE,
|
||
|
3 NJE, NQU
|
||
|
C-----------------------------------------------------------------------
|
||
|
C PJAC IS CALLED BY STOD TO COMPUTE AND PROCESS THE MATRIX
|
||
|
C P = I - H*EL(1)*J , WHERE J IS AN APPROXIMATION TO THE JACOBIAN.
|
||
|
C HERE J IS COMPUTED BY THE USER-SUPPLIED ROUTINE JAC IF
|
||
|
C MITER = 1 OR 4, OR BY FINITE DIFFERENCING IF MITER = 2, 3, OR 5.
|
||
|
C IF MITER = 3, A DIAGONAL APPROXIMATION TO J IS USED.
|
||
|
C J IS STORED IN WM AND REPLACED BY P. IF MITER .NE. 3, P IS THEN
|
||
|
C SUBJECTED TO LU DECOMPOSITION IN PREPARATION FOR LATER SOLUTION
|
||
|
C OF LINEAR SYSTEMS WITH P AS COEFFICIENT MATRIX. THIS IS DONE
|
||
|
C BY SGEFA IF MITER = 1 OR 2, AND BY SGBFA IF MITER = 4 OR 5.
|
||
|
C
|
||
|
C IN ADDITION TO VARIABLES DESCRIBED PREVIOUSLY, COMMUNICATION
|
||
|
C WITH PJAC USES THE FOLLOWING..
|
||
|
C Y = ARRAY CONTAINING PREDICTED VALUES ON ENTRY.
|
||
|
C FTEM = WORK ARRAY OF LENGTH N (ACOR IN STOD ).
|
||
|
C SAVF = ARRAY CONTAINING F EVALUATED AT PREDICTED Y.
|
||
|
C WM = REAL WORK SPACE FOR MATRICES. ON OUTPUT IT CONTAINS THE
|
||
|
C INVERSE DIAGONAL MATRIX IF MITER = 3 AND THE LU DECOMPOSITION
|
||
|
C OF P IF MITER IS 1, 2 , 4, OR 5.
|
||
|
C STORAGE OF MATRIX ELEMENTS STARTS AT WM(3).
|
||
|
C WM ALSO CONTAINS THE FOLLOWING MATRIX-RELATED DATA..
|
||
|
C WM(1) = SQRT(UROUND), USED IN NUMERICAL JACOBIAN INCREMENTS.
|
||
|
C WM(2) = H*EL0, SAVED FOR LATER USE IF MITER = 3.
|
||
|
C IWM = INTEGER WORK SPACE CONTAINING PIVOT INFORMATION, STARTING AT
|
||
|
C IWM(21), IF MITER IS 1, 2, 4, OR 5. IWM ALSO CONTAINS THE
|
||
|
C BAND PARAMETERS ML = IWM(1) AND MU = IWM(2) IF MITER IS 4 OR 5.
|
||
|
C EL0 = EL(1) (INPUT).
|
||
|
C IER = OUTPUT ERROR FLAG, = 0 IF NO TROUBLE, .NE. 0 IF
|
||
|
C P MATRIX FOUND TO BE SINGULAR.
|
||
|
C THIS ROUTINE ALSO USES THE COMMON VARIABLES EL0, H, TN, UROUND,
|
||
|
C MITER, N, NFE, AND NJE.
|
||
|
C-----------------------------------------------------------------------
|
||
|
C***FIRST EXECUTABLE STATEMENT PJAC
|
||
|
NJE = NJE + 1
|
||
|
HL0 = H*EL0
|
||
|
GO TO (100, 200, 300, 400, 500), MITER
|
||
|
C IF MITER = 1, CALL JAC AND MULTIPLY BY SCALAR. -----------------------
|
||
|
100 LENP = N*N
|
||
|
DO 110 I = 1,LENP
|
||
|
110 WM(I+2) = 0.0E0
|
||
|
CALL JAC (TN, Y, WM(3), N, RPAR, IPAR)
|
||
|
CON = -HL0
|
||
|
DO 120 I = 1,LENP
|
||
|
120 WM(I+2) = WM(I+2)*CON
|
||
|
GO TO 240
|
||
|
C IF MITER = 2, MAKE N CALLS TO F TO APPROXIMATE J. --------------------
|
||
|
200 FAC = VNWRMS (N, SAVF, EWT)
|
||
|
R0 = 1000.0E0*ABS(H)*UROUND*N*FAC
|
||
|
IF (R0 .EQ. 0.0E0) R0 = 1.0E0
|
||
|
SRUR = WM(1)
|
||
|
J1 = 2
|
||
|
DO 230 J = 1,N
|
||
|
YJ = Y(J)
|
||
|
R = MAX(SRUR*ABS(YJ),R0*EWT(J))
|
||
|
Y(J) = Y(J) + R
|
||
|
FAC = -HL0/R
|
||
|
CALL F (TN, Y, FTEM, RPAR, IPAR)
|
||
|
DO 220 I = 1,N
|
||
|
220 WM(I+J1) = (FTEM(I) - SAVF(I))*FAC
|
||
|
Y(J) = YJ
|
||
|
J1 = J1 + N
|
||
|
230 CONTINUE
|
||
|
NFE = NFE + N
|
||
|
C ADD IDENTITY MATRIX. -------------------------------------------------
|
||
|
240 J = 3
|
||
|
DO 250 I = 1,N
|
||
|
WM(J) = WM(J) + 1.0E0
|
||
|
250 J = J + (N + 1)
|
||
|
C DO LU DECOMPOSITION ON P. --------------------------------------------
|
||
|
CALL SGEFA (WM(3), N, N, IWM(21), IER)
|
||
|
RETURN
|
||
|
C IF MITER = 3, CONSTRUCT A DIAGONAL APPROXIMATION TO J AND P. ---------
|
||
|
300 WM(2) = HL0
|
||
|
IER = 0
|
||
|
R = EL0*0.1E0
|
||
|
DO 310 I = 1,N
|
||
|
310 Y(I) = Y(I) + R*(H*SAVF(I) - YH(I,2))
|
||
|
CALL F (TN, Y, WM(3), RPAR, IPAR)
|
||
|
NFE = NFE + 1
|
||
|
DO 320 I = 1,N
|
||
|
R0 = H*SAVF(I) - YH(I,2)
|
||
|
DI = 0.1E0*R0 - H*(WM(I+2) - SAVF(I))
|
||
|
WM(I+2) = 1.0E0
|
||
|
IF (ABS(R0) .LT. UROUND*EWT(I)) GO TO 320
|
||
|
IF (ABS(DI) .EQ. 0.0E0) GO TO 330
|
||
|
WM(I+2) = 0.1E0*R0/DI
|
||
|
320 CONTINUE
|
||
|
RETURN
|
||
|
330 IER = -1
|
||
|
RETURN
|
||
|
C IF MITER = 4, CALL JAC AND MULTIPLY BY SCALAR. -----------------------
|
||
|
400 ML = IWM(1)
|
||
|
MU = IWM(2)
|
||
|
ML3 = 3
|
||
|
MBAND = ML + MU + 1
|
||
|
MEBAND = MBAND + ML
|
||
|
LENP = MEBAND*N
|
||
|
DO 410 I = 1,LENP
|
||
|
410 WM(I+2) = 0.0E0
|
||
|
CALL JAC (TN, Y, WM(ML3), MEBAND, RPAR, IPAR)
|
||
|
CON = -HL0
|
||
|
DO 420 I = 1,LENP
|
||
|
420 WM(I+2) = WM(I+2)*CON
|
||
|
GO TO 570
|
||
|
C IF MITER = 5, MAKE MBAND CALLS TO F TO APPROXIMATE J. ----------------
|
||
|
500 ML = IWM(1)
|
||
|
MU = IWM(2)
|
||
|
MBAND = ML + MU + 1
|
||
|
MBA = MIN(MBAND,N)
|
||
|
MEBAND = MBAND + ML
|
||
|
MEB1 = MEBAND - 1
|
||
|
SRUR = WM(1)
|
||
|
FAC = VNWRMS (N, SAVF, EWT)
|
||
|
R0 = 1000.0E0*ABS(H)*UROUND*N*FAC
|
||
|
IF (R0 .EQ. 0.0E0) R0 = 1.0E0
|
||
|
DO 560 J = 1,MBA
|
||
|
DO 530 I = J,N,MBAND
|
||
|
YI = Y(I)
|
||
|
R = MAX(SRUR*ABS(YI),R0*EWT(I))
|
||
|
530 Y(I) = Y(I) + R
|
||
|
CALL F (TN, Y, FTEM, RPAR, IPAR)
|
||
|
DO 550 JJ = J,N,MBAND
|
||
|
Y(JJ) = YH(JJ,1)
|
||
|
YJJ = Y(JJ)
|
||
|
R = MAX(SRUR*ABS(YJJ),R0*EWT(JJ))
|
||
|
FAC = -HL0/R
|
||
|
I1 = MAX(JJ-MU,1)
|
||
|
I2 = MIN(JJ+ML,N)
|
||
|
II = JJ*MEB1 - ML + 2
|
||
|
DO 540 I = I1,I2
|
||
|
540 WM(II+I) = (FTEM(I) - SAVF(I))*FAC
|
||
|
550 CONTINUE
|
||
|
560 CONTINUE
|
||
|
NFE = NFE + MBA
|
||
|
C ADD IDENTITY MATRIX. -------------------------------------------------
|
||
|
570 II = MBAND + 2
|
||
|
DO 580 I = 1,N
|
||
|
WM(II) = WM(II) + 1.0E0
|
||
|
580 II = II + MEBAND
|
||
|
C DO LU DECOMPOSITION OF P. --------------------------------------------
|
||
|
CALL SGBFA (WM(3), MEBAND, N, ML, MU, IWM(21), IER)
|
||
|
RETURN
|
||
|
C----------------------- END OF SUBROUTINE PJAC -----------------------
|
||
|
END
|