mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-04 07:53:38 +01:00
334 lines
12 KiB
FortranFixed
334 lines
12 KiB
FortranFixed
|
*DECK POIS3D
|
||
|
SUBROUTINE POIS3D (LPEROD, L, C1, MPEROD, M, C2, NPEROD, N, A, B,
|
||
|
+ C, LDIMF, MDIMF, F, IERROR, W)
|
||
|
C***BEGIN PROLOGUE POIS3D
|
||
|
C***PURPOSE Solve a three-dimensional block tridiagonal linear system
|
||
|
C which arises from a finite difference approximation to a
|
||
|
C three-dimensional Poisson equation using the Fourier
|
||
|
C transform package FFTPAK written by Paul Swarztrauber.
|
||
|
C***LIBRARY SLATEC (FISHPACK)
|
||
|
C***CATEGORY I2B4B
|
||
|
C***TYPE SINGLE PRECISION (POIS3D-S)
|
||
|
C***KEYWORDS ELLIPTIC PDE, FISHPACK, HELMHOLTZ, POISSON
|
||
|
C***AUTHOR Adams, J., (NCAR)
|
||
|
C Swarztrauber, P. N., (NCAR)
|
||
|
C Sweet, R., (NCAR)
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C Subroutine POIS3D solves the linear system of equations
|
||
|
C
|
||
|
C C1*(X(I-1,J,K)-2.*X(I,J,K)+X(I+1,J,K))
|
||
|
C + C2*(X(I,J-1,K)-2.*X(I,J,K)+X(I,J+1,K))
|
||
|
C + A(K)*X(I,J,K-1)+B(K)*X(I,J,K)+C(K)*X(I,J,K+1) = F(I,J,K)
|
||
|
C
|
||
|
C for I=1,2,...,L , J=1,2,...,M , and K=1,2,...,N .
|
||
|
C
|
||
|
C The indices K-1 and K+1 are evaluated modulo N, i.e.
|
||
|
C X(I,J,0) = X(I,J,N) and X(I,J,N+1) = X(I,J,1). The unknowns
|
||
|
C X(0,J,K), X(L+1,J,K), X(I,0,K), and X(I,M+1,K) are assumed to take
|
||
|
C on certain prescribed values described below.
|
||
|
C
|
||
|
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
|
||
|
C
|
||
|
C
|
||
|
C * * * * * * * * Parameter Description * * * * * * * * * *
|
||
|
C
|
||
|
C
|
||
|
C * * * * * * On Input * * * * * *
|
||
|
C
|
||
|
C LPEROD Indicates the values that X(0,J,K) and X(L+1,J,K) are
|
||
|
C assumed to have.
|
||
|
C
|
||
|
C = 0 If X(0,J,K) = X(L,J,K) and X(L+1,J,K) = X(1,J,K).
|
||
|
C = 1 If X(0,J,K) = X(L+1,J,K) = 0.
|
||
|
C = 2 If X(0,J,K) = 0 and X(L+1,J,K) = X(L-1,J,K).
|
||
|
C = 3 If X(0,J,K) = X(2,J,K) and X(L+1,J,K) = X(L-1,J,K).
|
||
|
C = 4 If X(0,J,K) = X(2,J,K) and X(L+1,J,K) = 0.
|
||
|
C
|
||
|
C L The number of unknowns in the I-direction. L must be at
|
||
|
C least 3.
|
||
|
C
|
||
|
C C1 The real constant that appears in the above equation.
|
||
|
C
|
||
|
C MPEROD Indicates the values that X(I,0,K) and X(I,M+1,K) are
|
||
|
C assumed to have.
|
||
|
C
|
||
|
C = 0 If X(I,0,K) = X(I,M,K) and X(I,M+1,K) = X(I,1,K).
|
||
|
C = 1 If X(I,0,K) = X(I,M+1,K) = 0.
|
||
|
C = 2 If X(I,0,K) = 0 and X(I,M+1,K) = X(I,M-1,K).
|
||
|
C = 3 If X(I,0,K) = X(I,2,K) and X(I,M+1,K) = X(I,M-1,K).
|
||
|
C = 4 If X(I,0,K) = X(I,2,K) and X(I,M+1,K) = 0.
|
||
|
C
|
||
|
C M The number of unknowns in the J-direction. M must be at
|
||
|
C least 3.
|
||
|
C
|
||
|
C C2 The real constant which appears in the above equation.
|
||
|
C
|
||
|
C NPEROD = 0 If A(1) and C(N) are not zero.
|
||
|
C = 1 If A(1) = C(N) = 0.
|
||
|
C
|
||
|
C N The number of unknowns in the K-direction. N must be at
|
||
|
C least 3.
|
||
|
C
|
||
|
C
|
||
|
C A,B,C One-dimensional arrays of length N that specify the
|
||
|
C coefficients in the linear equations given above.
|
||
|
C
|
||
|
C If NPEROD = 0 the array elements must not depend upon the
|
||
|
C index K, but must be constant. Specifically, the
|
||
|
C subroutine checks the following condition
|
||
|
C
|
||
|
C A(K) = C(1)
|
||
|
C C(K) = C(1)
|
||
|
C B(K) = B(1)
|
||
|
C
|
||
|
C for K=1,2,...,N.
|
||
|
C
|
||
|
C LDIMF The row (or first) dimension of the three-dimensional
|
||
|
C array F as it appears in the program calling POIS3D.
|
||
|
C This parameter is used to specify the variable dimension
|
||
|
C of F. LDIMF must be at least L.
|
||
|
C
|
||
|
C MDIMF The column (or second) dimension of the three-dimensional
|
||
|
C array F as it appears in the program calling POIS3D.
|
||
|
C This parameter is used to specify the variable dimension
|
||
|
C of F. MDIMF must be at least M.
|
||
|
C
|
||
|
C F A three-dimensional array that specifies the values of
|
||
|
C the right side of the linear system of equations given
|
||
|
C above. F must be dimensioned at least L x M x N.
|
||
|
C
|
||
|
C W A one-dimensional array that must be provided by the
|
||
|
C user for work space. The length of W must be at least
|
||
|
C 30 + L + M + 2*N + MAX(L,M,N) +
|
||
|
C 7*(INT((L+1)/2) + INT((M+1)/2)).
|
||
|
C
|
||
|
C
|
||
|
C * * * * * * On Output * * * * * *
|
||
|
C
|
||
|
C F Contains the solution X.
|
||
|
C
|
||
|
C IERROR An error flag that indicates invalid input parameters.
|
||
|
C Except for number zero, a solution is not attempted.
|
||
|
C = 0 No error
|
||
|
C = 1 If LPEROD .LT. 0 or .GT. 4
|
||
|
C = 2 If L .LT. 3
|
||
|
C = 3 If MPEROD .LT. 0 or .GT. 4
|
||
|
C = 4 If M .LT. 3
|
||
|
C = 5 If NPEROD .LT. 0 or .GT. 1
|
||
|
C = 6 If N .LT. 3
|
||
|
C = 7 If LDIMF .LT. L
|
||
|
C = 8 If MDIMF .LT. M
|
||
|
C = 9 If A(K) .NE. C(1) or C(K) .NE. C(1) or B(I) .NE.B(1)
|
||
|
C for some K=1,2,...,N.
|
||
|
C = 10 If NPEROD = 1 and A(1) .NE. 0 or C(N) .NE. 0
|
||
|
C
|
||
|
C Since this is the only means of indicating a possibly
|
||
|
C incorrect call to POIS3D, the user should test IERROR
|
||
|
C after the call.
|
||
|
C
|
||
|
C *Long Description:
|
||
|
C
|
||
|
C * * * * * * * Program Specifications * * * * * * * * * * * *
|
||
|
C
|
||
|
C Dimension of A(N),B(N),C(N),F(LDIMF,MDIMF,N),
|
||
|
C Arguments W(see argument list)
|
||
|
C
|
||
|
C Latest December 1, 1978
|
||
|
C Revision
|
||
|
C
|
||
|
C Subprograms POIS3D,POS3D1,TRIDQ,RFFTI,RFFTF,RFFTF1,RFFTB,
|
||
|
C Required RFFTB1,COSTI,COST,SINTI,SINT,COSQI,COSQF,COSQF1
|
||
|
C COSQB,COSQB1,SINQI,SINQF,SINQB,CFFTI,CFFTI1,
|
||
|
C CFFTB,CFFTB1,PASSB2,PASSB3,PASSB4,PASSB,CFFTF,
|
||
|
C CFFTF1,PASSF1,PASSF2,PASSF3,PASSF4,PASSF,PIMACH,
|
||
|
C
|
||
|
C Special NONE
|
||
|
C Conditions
|
||
|
C
|
||
|
C Common NONE
|
||
|
C Blocks
|
||
|
C
|
||
|
C I/O NONE
|
||
|
C
|
||
|
C Precision Single
|
||
|
C
|
||
|
C Specialist Roland Sweet
|
||
|
C
|
||
|
C Language FORTRAN
|
||
|
C
|
||
|
C History Written by Roland Sweet at NCAR in July 1977
|
||
|
C
|
||
|
C Algorithm This subroutine solves three-dimensional block
|
||
|
C tridiagonal linear systems arising from finite
|
||
|
C difference approximations to three-dimensional
|
||
|
C Poisson equations using the Fourier transform
|
||
|
C package FFTPAK written by Paul Swarztrauber.
|
||
|
C
|
||
|
C Space 6561(decimal) = 14641(octal) locations on the
|
||
|
C Required NCAR Control Data 7600
|
||
|
C
|
||
|
C Timing and The execution time T on the NCAR Control Data
|
||
|
C Accuracy 7600 for subroutine POIS3D is roughly proportional
|
||
|
C to L*M*N*(log2(L)+log2(M)+5), but also depends on
|
||
|
C input parameters LPEROD and MPEROD. Some typical
|
||
|
C values are listed in the table below when NPEROD=0.
|
||
|
C To measure the accuracy of the algorithm a
|
||
|
C uniform random number generator was used to create
|
||
|
C a solution array X for the system given in the
|
||
|
C 'PURPOSE' with
|
||
|
C
|
||
|
C A(K) = C(K) = -0.5*B(K) = 1, K=1,2,...,N
|
||
|
C
|
||
|
C and, when NPEROD = 1
|
||
|
C
|
||
|
C A(1) = C(N) = 0
|
||
|
C A(N) = C(1) = 2.
|
||
|
C
|
||
|
C The solution X was substituted into the given sys-
|
||
|
C tem and, using double precision, a right side Y was
|
||
|
C computed. Using this array Y subroutine POIS3D was
|
||
|
C called to produce an approximate solution Z. Then
|
||
|
C the relative error, defined as
|
||
|
C
|
||
|
C E = MAX(ABS(Z(I,J,K)-X(I,J,K)))/MAX(ABS(X(I,J,K)))
|
||
|
C
|
||
|
C where the two maxima are taken over I=1,2,...,L,
|
||
|
C J=1,2,...,M and K=1,2,...,N, was computed. The
|
||
|
C value of E is given in the table below for some
|
||
|
C typical values of L,M and N.
|
||
|
C
|
||
|
C
|
||
|
C L(=M=N) LPEROD MPEROD T(MSECS) E
|
||
|
C ------ ------ ------ -------- ------
|
||
|
C
|
||
|
C 16 0 0 272 1.E-13
|
||
|
C 15 1 1 287 4.E-13
|
||
|
C 17 3 3 338 2.E-13
|
||
|
C 32 0 0 1755 2.E-13
|
||
|
C 31 1 1 1894 2.E-12
|
||
|
C 33 3 3 2042 7.E-13
|
||
|
C
|
||
|
C
|
||
|
C Portability American National Standards Institute FORTRAN.
|
||
|
C The machine dependent constant PI is defined in
|
||
|
C function PIMACH.
|
||
|
C
|
||
|
C Required COS,SIN,ATAN
|
||
|
C Resident
|
||
|
C Routines
|
||
|
C
|
||
|
C Reference NONE
|
||
|
C
|
||
|
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
|
||
|
C
|
||
|
C***REFERENCES (NONE)
|
||
|
C***ROUTINES CALLED POS3D1
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 801001 DATE WRITTEN
|
||
|
C 890531 Changed all specific intrinsics to generic. (WRB)
|
||
|
C 890531 REVISION DATE from Version 3.2
|
||
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C***END PROLOGUE POIS3D
|
||
|
DIMENSION A(*) ,B(*) ,C(*) ,
|
||
|
1 F(LDIMF,MDIMF,*) ,W(*) ,SAVE(6)
|
||
|
C***FIRST EXECUTABLE STATEMENT POIS3D
|
||
|
LP = LPEROD+1
|
||
|
MP = MPEROD+1
|
||
|
NP = NPEROD+1
|
||
|
C
|
||
|
C CHECK FOR INVALID INPUT.
|
||
|
C
|
||
|
IERROR = 0
|
||
|
IF (LP.LT.1 .OR. LP.GT.5) IERROR = 1
|
||
|
IF (L .LT. 3) IERROR = 2
|
||
|
IF (MP.LT.1 .OR. MP.GT.5) IERROR = 3
|
||
|
IF (M .LT. 3) IERROR = 4
|
||
|
IF (NP.LT.1 .OR. NP.GT.2) IERROR = 5
|
||
|
IF (N .LT. 3) IERROR = 6
|
||
|
IF (LDIMF .LT. L) IERROR = 7
|
||
|
IF (MDIMF .LT. M) IERROR = 8
|
||
|
IF (NP .NE. 1) GO TO 103
|
||
|
DO 101 K=1,N
|
||
|
IF (A(K) .NE. C(1)) GO TO 102
|
||
|
IF (C(K) .NE. C(1)) GO TO 102
|
||
|
IF (B(K) .NE. B(1)) GO TO 102
|
||
|
101 CONTINUE
|
||
|
GO TO 104
|
||
|
102 IERROR = 9
|
||
|
103 IF (NPEROD.EQ.1 .AND. (A(1).NE.0. .OR. C(N).NE.0.)) IERROR = 10
|
||
|
104 IF (IERROR .NE. 0) GO TO 122
|
||
|
IWYRT = L+1
|
||
|
IWT = IWYRT+M
|
||
|
IWD = IWT+MAX(L,M,N)+1
|
||
|
IWBB = IWD+N
|
||
|
IWX = IWBB+N
|
||
|
IWY = IWX+7*((L+1)/2)+15
|
||
|
GO TO (105,114),NP
|
||
|
C
|
||
|
C REORDER UNKNOWNS WHEN NPEROD = 0.
|
||
|
C
|
||
|
105 NH = (N+1)/2
|
||
|
NHM1 = NH-1
|
||
|
NODD = 1
|
||
|
IF (2*NH .EQ. N) NODD = 2
|
||
|
DO 111 I=1,L
|
||
|
DO 110 J=1,M
|
||
|
DO 106 K=1,NHM1
|
||
|
NHPK = NH+K
|
||
|
NHMK = NH-K
|
||
|
W(K) = F(I,J,NHMK)-F(I,J,NHPK)
|
||
|
W(NHPK) = F(I,J,NHMK)+F(I,J,NHPK)
|
||
|
106 CONTINUE
|
||
|
W(NH) = 2.*F(I,J,NH)
|
||
|
GO TO (108,107),NODD
|
||
|
107 W(N) = 2.*F(I,J,N)
|
||
|
108 DO 109 K=1,N
|
||
|
F(I,J,K) = W(K)
|
||
|
109 CONTINUE
|
||
|
110 CONTINUE
|
||
|
111 CONTINUE
|
||
|
SAVE(1) = C(NHM1)
|
||
|
SAVE(2) = A(NH)
|
||
|
SAVE(3) = C(NH)
|
||
|
SAVE(4) = B(NHM1)
|
||
|
SAVE(5) = B(N)
|
||
|
SAVE(6) = A(N)
|
||
|
C(NHM1) = 0.
|
||
|
A(NH) = 0.
|
||
|
C(NH) = 2.*C(NH)
|
||
|
GO TO (112,113),NODD
|
||
|
112 B(NHM1) = B(NHM1)-A(NH-1)
|
||
|
B(N) = B(N)+A(N)
|
||
|
GO TO 114
|
||
|
113 A(N) = C(NH)
|
||
|
114 CONTINUE
|
||
|
CALL POS3D1 (LP,L,MP,M,N,A,B,C,LDIMF,MDIMF,F,W,W(IWYRT),W(IWT),
|
||
|
1 W(IWD),W(IWX),W(IWY),C1,C2,W(IWBB))
|
||
|
GO TO (115,122),NP
|
||
|
115 DO 121 I=1,L
|
||
|
DO 120 J=1,M
|
||
|
DO 116 K=1,NHM1
|
||
|
NHMK = NH-K
|
||
|
NHPK = NH+K
|
||
|
W(NHMK) = .5*(F(I,J,NHPK)+F(I,J,K))
|
||
|
W(NHPK) = .5*(F(I,J,NHPK)-F(I,J,K))
|
||
|
116 CONTINUE
|
||
|
W(NH) = .5*F(I,J,NH)
|
||
|
GO TO (118,117),NODD
|
||
|
117 W(N) = .5*F(I,J,N)
|
||
|
118 DO 119 K=1,N
|
||
|
F(I,J,K) = W(K)
|
||
|
119 CONTINUE
|
||
|
120 CONTINUE
|
||
|
121 CONTINUE
|
||
|
C(NHM1) = SAVE(1)
|
||
|
A(NH) = SAVE(2)
|
||
|
C(NH) = SAVE(3)
|
||
|
B(NHM1) = SAVE(4)
|
||
|
B(N) = SAVE(5)
|
||
|
A(N) = SAVE(6)
|
||
|
122 CONTINUE
|
||
|
RETURN
|
||
|
END
|