OpenLibm/slatec/ppgq8.f

194 lines
6.4 KiB
FortranFixed
Raw Normal View History

*DECK PPGQ8
SUBROUTINE PPGQ8 (FUN, LDC, C, XI, LXI, KK, ID, A, B, INPPV, ERR,
+ ANS, IERR)
C***BEGIN PROLOGUE PPGQ8
C***SUBSIDIARY
C***PURPOSE Subsidiary to PFQAD
C***LIBRARY SLATEC
C***TYPE SINGLE PRECISION (PPGQ8-S, DPPGQ8-D)
C***AUTHOR Jones, R. E., (SNLA)
C***DESCRIPTION
C
C Abstract
C PPGQ8, a modification of GAUS8, integrates the
C product of FUN(X) by the ID-th derivative of a spline
C PPVAL(LDC,C,XI,LXI,KK,ID,X,INPPV) between limits A and B.
C
C Description of arguments
C
C INPUT--
C FUN - Name of external function of one argument which
C multiplies PPVAL.
C LDC - Leading dimension of matrix C, LDC.GE.KK
C C - Matrix of Taylor derivatives of dimension at least
C (K,LXI)
C XI - Breakpoint vector of length LXI+1
C LXI - Number of polynomial pieces
C KK - Order of the spline, KK.GE.1
C ID - Order of the spline derivative, 0.LE.ID.LE.KK-1
C A - Lower limit of integral
C B - Upper limit of integral (may be less than A)
C INPPV- Initialization parameter for PPVAL
C ERR - Is a requested pseudorelative error tolerance. Normally
C pick a value of ABS(ERR).LT.1E-3. ANS will normally
C have no more error than ABS(ERR) times the integral of
C the absolute value of FUN(X)*PPVAL(LDC,C,XI,LXI,KK,ID,X,
C INPPV).
C
C OUTPUT--
C ERR - Will be an estimate of the absolute error in ANS if the
C input value of ERR was negative. (ERR is unchanged if
C the input value of ERR was nonnegative.) The estimated
C error is solely for information to the user and should
C not be used as a correction to the computed integral.
C ANS - Computed value of integral
C IERR- A status code
C --Normal codes
C 1 ANS most likely meets requested error tolerance,
C or A=B.
C -1 A and B ARE too nearly equal to allow normal
C integration. ANS is set to zero.
C --Abnormal code
C 2 ANS probably does not meet requested error tolerance.
C
C***SEE ALSO PFQAD
C***ROUTINES CALLED I1MACH, PPVAL, R1MACH, XERMSG
C***REVISION HISTORY (YYMMDD)
C 800901 DATE WRITTEN
C 890531 Changed all specific intrinsics to generic. (WRB)
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
C 900326 Removed duplicate information from DESCRIPTION section.
C (WRB)
C 900328 Added TYPE section. (WRB)
C 910408 Updated the AUTHOR section. (WRB)
C***END PROLOGUE PPGQ8
C
INTEGER ID,IERR,INPPV,K,KK,KML,KMX,L,LDC,LMN,LMX,LR,LXI,MXL,
1 NBITS, NIB, NLMN, NLMX
INTEGER I1MACH
REAL A,AA,AE,ANIB, ANS,AREA,B, BE,C,CC,EE, EF, EPS, ERR,
1 EST,GL,GLR,GR,HH,SQ2,TOL,VL,VR,W1, W2, W3, W4, XI, X1,
2 X2, X3, X4, X, H
REAL R1MACH, PPVAL, G8, FUN
DIMENSION XI(*), C(LDC,*)
DIMENSION AA(30), HH(30), LR(30), VL(30), GR(30)
SAVE X1, X2, X3, X4, W1, W2, W3, W4, SQ2, NLMN, KMX, KML
DATA X1, X2, X3, X4/
1 1.83434642495649805E-01, 5.25532409916328986E-01,
2 7.96666477413626740E-01, 9.60289856497536232E-01/
DATA W1, W2, W3, W4/
1 3.62683783378361983E-01, 3.13706645877887287E-01,
2 2.22381034453374471E-01, 1.01228536290376259E-01/
DATA SQ2/1.41421356E0/
DATA NLMN/1/,KMX/5000/,KML/6/
G8(X,H)=H*((W1*(FUN(X-X1*H)*PPVAL(LDC,C,XI,LXI,KK,ID,X-X1*H,INPPV)
1 +FUN(X+X1*H)*PPVAL(LDC,C,XI,LXI,KK,ID,X+X1*H,INPPV))
2 +W2*(FUN(X-X2*H)*PPVAL(LDC,C,XI,LXI,KK,ID,X-X2*H,INPPV)
3 +FUN(X+X2*H)*PPVAL(LDC,C,XI,LXI,KK,ID,X+X2*H,INPPV)))
4 +(W3*(FUN(X-X3*H)*PPVAL(LDC,C,XI,LXI,KK,ID,X-X3*H,INPPV)
5 +FUN(X+X3*H)*PPVAL(LDC,C,XI,LXI,KK,ID,X+X3*H,INPPV))
6 +W4*(FUN(X-X4*H)*PPVAL(LDC,C,XI,LXI,KK,ID,X-X4*H,INPPV)
7 +FUN(X+X4*H)*PPVAL(LDC,C,XI,LXI,KK,ID,X+X4*H,INPPV))))
C
C INITIALIZE
C
C***FIRST EXECUTABLE STATEMENT PPGQ8
K = I1MACH(11)
ANIB = R1MACH(5)*K/0.30102000E0
NBITS = INT(ANIB)
NLMX = (NBITS*5)/8
ANS = 0.0E0
IERR = 1
BE = 0.0E0
IF (A.EQ.B) GO TO 140
LMX = NLMX
LMN = NLMN
IF (B.EQ.0.0E0) GO TO 10
IF (SIGN(1.0E0,B)*A.LE.0.0E0) GO TO 10
CC = ABS(1.0E0-A/B)
IF (CC.GT.0.1E0) GO TO 10
IF (CC.LE.0.0E0) GO TO 140
ANIB = 0.5E0 - LOG(CC)/0.69314718E0
NIB = INT(ANIB)
LMX = MIN(NLMX,NBITS-NIB-7)
IF (LMX.LT.1) GO TO 130
LMN = MIN(LMN,LMX)
10 TOL = MAX(ABS(ERR),2.0E0**(5-NBITS))/2.0E0
IF (ERR.EQ.0.0E0) TOL = SQRT(R1MACH(4))
EPS = TOL
HH(1) = (B-A)/4.0E0
AA(1) = A
LR(1) = 1
L = 1
EST = G8(AA(L)+2.0E0*HH(L),2.0E0*HH(L))
K = 8
AREA = ABS(EST)
EF = 0.5E0
MXL = 0
C
C COMPUTE REFINED ESTIMATES, ESTIMATE THE ERROR, ETC.
C
20 GL = G8(AA(L)+HH(L),HH(L))
GR(L) = G8(AA(L)+3.0E0*HH(L),HH(L))
K = K + 16
AREA = AREA + (ABS(GL)+ABS(GR(L))-ABS(EST))
GLR = GL + GR(L)
EE = ABS(EST-GLR)*EF
AE = MAX(EPS*AREA,TOL*ABS(GLR))
IF (EE-AE) 40, 40, 50
30 MXL = 1
40 BE = BE + (EST-GLR)
IF (LR(L)) 60, 60, 80
C
C CONSIDER THE LEFT HALF OF THIS LEVEL
C
50 IF (K.GT.KMX) LMX = KML
IF (L.GE.LMX) GO TO 30
L = L + 1
EPS = EPS*0.5E0
EF = EF/SQ2
HH(L) = HH(L-1)*0.5E0
LR(L) = -1
AA(L) = AA(L-1)
EST = GL
GO TO 20
C
C PROCEED TO RIGHT HALF AT THIS LEVEL
C
60 VL(L) = GLR
70 EST = GR(L-1)
LR(L) = 1
AA(L) = AA(L) + 4.0E0*HH(L)
GO TO 20
C
C RETURN ONE LEVEL
C
80 VR = GLR
90 IF (L.LE.1) GO TO 120
L = L - 1
EPS = EPS*2.0E0
EF = EF*SQ2
IF (LR(L)) 100, 100, 110
100 VL(L) = VL(L+1) + VR
GO TO 70
110 VR = VL(L+1) + VR
GO TO 90
C
C EXIT
C
120 ANS = VR
IF ((MXL.EQ.0) .OR. (ABS(BE).LE.2.0E0*TOL*AREA)) GO TO 140
IERR = 2
CALL XERMSG ('SLATEC', 'PPGQ8',
+ 'ANS IS PROBABLY INSUFFICIENTLY ACCURATE.', 3, 1)
GO TO 140
130 IERR = -1
CALL XERMSG ('SLATEC', 'PPGQ8',
+ 'A AND B ARE TOO NEARLY EQUAL TO ALLOW NORMAL INTEGRATION. ' //
+ 'ANS IS SET TO ZERO AND IERR TO -1.', 1, -1)
140 CONTINUE
IF (ERR.LT.0.0E0) ERR = BE
RETURN
END