OpenLibm/slatec/psifn.f

369 lines
13 KiB
FortranFixed
Raw Normal View History

*DECK PSIFN
SUBROUTINE PSIFN (X, N, KODE, M, ANS, NZ, IERR)
C***BEGIN PROLOGUE PSIFN
C***PURPOSE Compute derivatives of the Psi function.
C***LIBRARY SLATEC
C***CATEGORY C7C
C***TYPE SINGLE PRECISION (PSIFN-S, DPSIFN-D)
C***KEYWORDS DERIVATIVES OF THE GAMMA FUNCTION, POLYGAMMA FUNCTION,
C PSI FUNCTION
C***AUTHOR Amos, D. E., (SNLA)
C***DESCRIPTION
C
C The following definitions are used in PSIFN:
C
C Definition 1
C PSI(X) = d/dx (ln(GAMMA(X)), the first derivative of
C the LOG GAMMA function.
C Definition 2
C K K
C PSI(K,X) = d /dx (PSI(X)), the K-th derivative of PSI(X).
C ___________________________________________________________________
C PSIFN computes a sequence of SCALED derivatives of
C the PSI function; i.e. for fixed X and M it computes
C the M-member sequence
C
C ((-1)**(K+1)/GAMMA(K+1))*PSI(K,X)
C for K = N,...,N+M-1
C
C where PSI(K,X) is as defined above. For KODE=1, PSIFN returns
C the scaled derivatives as described. KODE=2 is operative only
C when K=0 and in that case PSIFN returns -PSI(X) + LN(X). That
C is, the logarithmic behavior for large X is removed when KODE=1
C and K=0. When sums or differences of PSI functions are computed
C the logarithmic terms can be combined analytically and computed
C separately to help retain significant digits.
C
C Note that CALL PSIFN(X,0,1,1,ANS) results in
C ANS = -PSI(X)
C
C Input
C X - Argument, X .gt. 0.0E0
C N - First member of the sequence, 0 .le. N .le. 100
C N=0 gives ANS(1) = -PSI(X) for KODE=1
C -PSI(X)+LN(X) for KODE=2
C KODE - Selection parameter
C KODE=1 returns scaled derivatives of the PSI
C function.
C KODE=2 returns scaled derivatives of the PSI
C function EXCEPT when N=0. In this case,
C ANS(1) = -PSI(X) + LN(X) is returned.
C M - Number of members of the sequence, M .ge. 1
C
C Output
C ANS - A vector of length at least M whose first M
C components contain the sequence of derivatives
C scaled according to KODE.
C NZ - Underflow flag
C NZ.eq.0, A normal return
C NZ.ne.0, Underflow, last NZ components of ANS are
C set to zero, ANS(M-K+1)=0.0, K=1,...,NZ
C IERR - Error flag
C IERR=0, A normal return, computation completed
C IERR=1, Input error, no computation
C IERR=2, Overflow, X too small or N+M-1 too
C large or both
C IERR=3, Error, N too large. Dimensioned
C array TRMR(NMAX) is not large enough for N
C
C The nominal computational accuracy is the maximum of unit
C roundoff (=R1MACH(4)) and 1.0E-18 since critical constants
C are given to only 18 digits.
C
C DPSIFN is the Double Precision version of PSIFN.
C
C *Long Description:
C
C The basic method of evaluation is the asymptotic expansion
C for large X.ge.XMIN followed by backward recursion on a two
C term recursion relation
C
C W(X+1) + X**(-N-1) = W(X).
C
C This is supplemented by a series
C
C SUM( (X+K)**(-N-1) , K=0,1,2,... )
C
C which converges rapidly for large N. Both XMIN and the
C number of terms of the series are calculated from the unit
C roundoff of the machine environment.
C
C***REFERENCES Handbook of Mathematical Functions, National Bureau
C of Standards Applied Mathematics Series 55, edited
C by M. Abramowitz and I. A. Stegun, equations 6.3.5,
C 6.3.18, 6.4.6, 6.4.9 and 6.4.10, pp.258-260, 1964.
C D. E. Amos, A portable Fortran subroutine for
C derivatives of the Psi function, Algorithm 610, ACM
C Transactions on Mathematical Software 9, 4 (1983),
C pp. 494-502.
C***ROUTINES CALLED I1MACH, R1MACH
C***REVISION HISTORY (YYMMDD)
C 820601 DATE WRITTEN
C 890531 Changed all specific intrinsics to generic. (WRB)
C 890531 REVISION DATE from Version 3.2
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 920501 Reformatted the REFERENCES section. (WRB)
C***END PROLOGUE PSIFN
INTEGER I, IERR, J, K, KODE, M, MM, MX, N, NMAX, NN, NP, NX, NZ
INTEGER I1MACH
REAL ANS, ARG, B, DEN, ELIM, EPS, FLN, FN, FNP, FNS, FX, RLN,
* RXSQ, R1M4, R1M5, S, SLOPE, T, TA, TK, TOL, TOLS, TRM, TRMR,
* TSS, TST, TT, T1, T2, WDTOL, X, XDMLN, XDMY, XINC, XLN, XM,
* XMIN, XQ, YINT
REAL R1MACH
DIMENSION B(22), TRM(22), TRMR(100), ANS(*)
SAVE NMAX, B
DATA NMAX /100/
C-----------------------------------------------------------------------
C BERNOULLI NUMBERS
C-----------------------------------------------------------------------
DATA B(1), B(2), B(3), B(4), B(5), B(6), B(7), B(8), B(9), B(10),
* B(11), B(12), B(13), B(14), B(15), B(16), B(17), B(18), B(19),
* B(20), B(21), B(22) /1.00000000000000000E+00,
* -5.00000000000000000E-01,1.66666666666666667E-01,
* -3.33333333333333333E-02,2.38095238095238095E-02,
* -3.33333333333333333E-02,7.57575757575757576E-02,
* -2.53113553113553114E-01,1.16666666666666667E+00,
* -7.09215686274509804E+00,5.49711779448621554E+01,
* -5.29124242424242424E+02,6.19212318840579710E+03,
* -8.65802531135531136E+04,1.42551716666666667E+06,
* -2.72982310678160920E+07,6.01580873900642368E+08,
* -1.51163157670921569E+10,4.29614643061166667E+11,
* -1.37116552050883328E+13,4.88332318973593167E+14,
* -1.92965793419400681E+16/
C
C***FIRST EXECUTABLE STATEMENT PSIFN
IERR = 0
NZ=0
IF (X.LE.0.0E0) IERR=1
IF (N.LT.0) IERR=1
IF (KODE.LT.1 .OR. KODE.GT.2) IERR=1
IF (M.LT.1) IERR=1
IF (IERR.NE.0) RETURN
MM=M
NX = MIN(-I1MACH(12),I1MACH(13))
R1M5 = R1MACH(5)
R1M4 = R1MACH(4)*0.5E0
WDTOL = MAX(R1M4,0.5E-18)
C-----------------------------------------------------------------------
C ELIM = APPROXIMATE EXPONENTIAL OVER AND UNDERFLOW LIMIT
C-----------------------------------------------------------------------
ELIM = 2.302E0*(NX*R1M5-3.0E0)
XLN = LOG(X)
41 CONTINUE
NN = N + MM - 1
FN = NN
FNP = FN + 1.0E0
T = FNP*XLN
C-----------------------------------------------------------------------
C OVERFLOW AND UNDERFLOW TEST FOR SMALL AND LARGE X
C-----------------------------------------------------------------------
IF (ABS(T).GT.ELIM) GO TO 290
IF (X.LT.WDTOL) GO TO 260
C-----------------------------------------------------------------------
C COMPUTE XMIN AND THE NUMBER OF TERMS OF THE SERIES, FLN+1
C-----------------------------------------------------------------------
RLN = R1M5*I1MACH(11)
RLN = MIN(RLN,18.06E0)
FLN = MAX(RLN,3.0E0) - 3.0E0
YINT = 3.50E0 + 0.40E0*FLN
SLOPE = 0.21E0 + FLN*(0.0006038E0*FLN+0.008677E0)
XM = YINT + SLOPE*FN
MX = INT(XM) + 1
XMIN = MX
IF (N.EQ.0) GO TO 50
XM = -2.302E0*RLN - MIN(0.0E0,XLN)
FNS = N
ARG = XM/FNS
ARG = MIN(0.0E0,ARG)
EPS = EXP(ARG)
XM = 1.0E0 - EPS
IF (ABS(ARG).LT.1.0E-3) XM = -ARG
FLN = X*XM/EPS
XM = XMIN - X
IF (XM.GT.7.0E0 .AND. FLN.LT.15.0E0) GO TO 200
50 CONTINUE
XDMY = X
XDMLN = XLN
XINC = 0.0E0
IF (X.GE.XMIN) GO TO 60
NX = INT(X)
XINC = XMIN - NX
XDMY = X + XINC
XDMLN = LOG(XDMY)
60 CONTINUE
C-----------------------------------------------------------------------
C GENERATE W(N+MM-1,X) BY THE ASYMPTOTIC EXPANSION
C-----------------------------------------------------------------------
T = FN*XDMLN
T1 = XDMLN + XDMLN
T2 = T + XDMLN
TK = MAX(ABS(T),ABS(T1),ABS(T2))
IF (TK.GT.ELIM) GO TO 380
TSS = EXP(-T)
TT = 0.5E0/XDMY
T1 = TT
TST = WDTOL*TT
IF (NN.NE.0) T1 = TT + 1.0E0/FN
RXSQ = 1.0E0/(XDMY*XDMY)
TA = 0.5E0*RXSQ
T = FNP*TA
S = T*B(3)
IF (ABS(S).LT.TST) GO TO 80
TK = 2.0E0
DO 70 K=4,22
T = T*((TK+FN+1.0E0)/(TK+1.0E0))*((TK+FN)/(TK+2.0E0))*RXSQ
TRM(K) = T*B(K)
IF (ABS(TRM(K)).LT.TST) GO TO 80
S = S + TRM(K)
TK = TK + 2.0E0
70 CONTINUE
80 CONTINUE
S = (S+T1)*TSS
IF (XINC.EQ.0.0E0) GO TO 100
C-----------------------------------------------------------------------
C BACKWARD RECUR FROM XDMY TO X
C-----------------------------------------------------------------------
NX = INT(XINC)
NP = NN + 1
IF (NX.GT.NMAX) GO TO 390
IF (NN.EQ.0) GO TO 160
XM = XINC - 1.0E0
FX = X + XM
C-----------------------------------------------------------------------
C THIS LOOP SHOULD NOT BE CHANGED. FX IS ACCURATE WHEN X IS SMALL
C-----------------------------------------------------------------------
DO 90 I=1,NX
TRMR(I) = FX**(-NP)
S = S + TRMR(I)
XM = XM - 1.0E0
FX = X + XM
90 CONTINUE
100 CONTINUE
ANS(MM) = S
IF (FN.EQ.0.0E0) GO TO 180
C-----------------------------------------------------------------------
C GENERATE LOWER DERIVATIVES, J.LT.N+MM-1
C-----------------------------------------------------------------------
IF (MM.EQ.1) RETURN
DO 150 J=2,MM
FNP = FN
FN = FN - 1.0E0
TSS = TSS*XDMY
T1 = TT
IF (FN.NE.0.0E0) T1 = TT + 1.0E0/FN
T = FNP*TA
S = T*B(3)
IF (ABS(S).LT.TST) GO TO 120
TK = 3.0E0 + FNP
DO 110 K=4,22
TRM(K) = TRM(K)*FNP/TK
IF (ABS(TRM(K)).LT.TST) GO TO 120
S = S + TRM(K)
TK = TK + 2.0E0
110 CONTINUE
120 CONTINUE
S = (S+T1)*TSS
IF (XINC.EQ.0.0E0) GO TO 140
IF (FN.EQ.0.0E0) GO TO 160
XM = XINC - 1.0E0
FX = X + XM
DO 130 I=1,NX
TRMR(I) = TRMR(I)*FX
S = S + TRMR(I)
XM = XM - 1.0E0
FX = X + XM
130 CONTINUE
140 CONTINUE
MX = MM - J + 1
ANS(MX) = S
IF (FN.EQ.0.0E0) GO TO 180
150 CONTINUE
RETURN
C-----------------------------------------------------------------------
C RECURSION FOR N = 0
C-----------------------------------------------------------------------
160 CONTINUE
DO 170 I=1,NX
S = S + 1.0E0/(X+NX-I)
170 CONTINUE
180 CONTINUE
IF (KODE.EQ.2) GO TO 190
ANS(1) = S - XDMLN
RETURN
190 CONTINUE
IF (XDMY.EQ.X) RETURN
XQ = XDMY/X
ANS(1) = S - LOG(XQ)
RETURN
C-----------------------------------------------------------------------
C COMPUTE BY SERIES (X+K)**(-(N+1)) , K=0,1,2,...
C-----------------------------------------------------------------------
200 CONTINUE
NN = INT(FLN) + 1
NP = N + 1
T1 = (FNS+1.0E0)*XLN
T = EXP(-T1)
S = T
DEN = X
DO 210 I=1,NN
DEN = DEN + 1.0E0
TRM(I) = DEN**(-NP)
S = S + TRM(I)
210 CONTINUE
ANS(1) = S
IF (N.NE.0) GO TO 220
IF (KODE.EQ.2) ANS(1) = S + XLN
220 CONTINUE
IF (MM.EQ.1) RETURN
C-----------------------------------------------------------------------
C GENERATE HIGHER DERIVATIVES, J.GT.N
C-----------------------------------------------------------------------
TOL = WDTOL/5.0E0
DO 250 J=2,MM
T = T/X
S = T
TOLS = T*TOL
DEN = X
DO 230 I=1,NN
DEN = DEN + 1.0E0
TRM(I) = TRM(I)/DEN
S = S + TRM(I)
IF (TRM(I).LT.TOLS) GO TO 240
230 CONTINUE
240 CONTINUE
ANS(J) = S
250 CONTINUE
RETURN
C-----------------------------------------------------------------------
C SMALL X.LT.UNIT ROUND OFF
C-----------------------------------------------------------------------
260 CONTINUE
ANS(1) = X**(-N-1)
IF (MM.EQ.1) GO TO 280
K = 1
DO 270 I=2,MM
ANS(K+1) = ANS(K)/X
K = K + 1
270 CONTINUE
280 CONTINUE
IF (N.NE.0) RETURN
IF (KODE.EQ.2) ANS(1) = ANS(1) + XLN
RETURN
290 CONTINUE
IF (T.GT.0.0E0) GO TO 380
NZ=0
IERR=2
RETURN
380 CONTINUE
NZ=NZ+1
ANS(MM)=0.0E0
MM=MM-1
IF(MM.EQ.0) RETURN
GO TO 41
390 CONTINUE
IERR=3
NZ=0
RETURN
END