OpenLibm/slatec/qagpe.f

570 lines
21 KiB
FortranFixed
Raw Normal View History

*DECK QAGPE
SUBROUTINE QAGPE (F, A, B, NPTS2, POINTS, EPSABS, EPSREL, LIMIT,
+ RESULT, ABSERR, NEVAL, IER, ALIST, BLIST, RLIST, ELIST, PTS,
+ IORD, LEVEL, NDIN, LAST)
C***BEGIN PROLOGUE QAGPE
C***PURPOSE Approximate a given definite integral I = Integral of F
C over (A,B), hopefully satisfying the accuracy claim:
C ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I)).
C Break points of the integration interval, where local
C difficulties of the integrand may occur (e.g. singularities
C or discontinuities) are provided by the user.
C***LIBRARY SLATEC (QUADPACK)
C***CATEGORY H2A2A1
C***TYPE SINGLE PRECISION (QAGPE-S, DQAGPE-D)
C***KEYWORDS AUTOMATIC INTEGRATOR, EXTRAPOLATION, GENERAL-PURPOSE,
C GLOBALLY ADAPTIVE, QUADPACK, QUADRATURE,
C SINGULARITIES AT USER SPECIFIED POINTS
C***AUTHOR Piessens, Robert
C Applied Mathematics and Programming Division
C K. U. Leuven
C de Doncker, Elise
C Applied Mathematics and Programming Division
C K. U. Leuven
C***DESCRIPTION
C
C Computation of a definite integral
C Standard fortran subroutine
C Real version
C
C PARAMETERS
C ON ENTRY
C F - Real
C Function subprogram defining the integrand
C function F(X). The actual name for F needs to be
C declared E X T E R N A L in the driver program.
C
C A - Real
C Lower limit of integration
C
C B - Real
C Upper limit of integration
C
C NPTS2 - Integer
C Number equal to two more than the number of
C user-supplied break points within the integration
C range, NPTS2.GE.2.
C If NPTS2.LT.2, the routine will end with IER = 6.
C
C POINTS - Real
C Vector of dimension NPTS2, the first (NPTS2-2)
C elements of which are the user provided break
C POINTS. If these POINTS do not constitute an
C ascending sequence there will be an automatic
C sorting.
C
C EPSABS - Real
C Absolute accuracy requested
C EPSREL - Real
C Relative accuracy requested
C If EPSABS.LE.0
C and EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
C the routine will end with IER = 6.
C
C LIMIT - Integer
C Gives an upper bound on the number of subintervals
C in the partition of (A,B), LIMIT.GE.NPTS2
C If LIMIT.LT.NPTS2, the routine will end with
C IER = 6.
C
C ON RETURN
C RESULT - Real
C Approximation to the integral
C
C ABSERR - Real
C Estimate of the modulus of the absolute error,
C which should equal or exceed ABS(I-RESULT)
C
C NEVAL - Integer
C Number of integrand evaluations
C
C IER - Integer
C IER = 0 Normal and reliable termination of the
C routine. It is assumed that the requested
C accuracy has been achieved.
C IER.GT.0 Abnormal termination of the routine.
C The estimates for integral and error are
C less reliable. It is assumed that the
C requested accuracy has not been achieved.
C ERROR MESSAGES
C IER = 1 Maximum number of subdivisions allowed
C has been achieved. One can allow more
C subdivisions by increasing the value of
C LIMIT (and taking the according dimension
C adjustments into account). However, if
C this yields no improvement it is advised
C to analyze the integrand in order to
C determine the integration difficulties. If
C the position of a local difficulty can be
C determined (i.e. SINGULARITY,
C DISCONTINUITY within the interval), it
C should be supplied to the routine as an
C element of the vector points. If necessary
C an appropriate special-purpose integrator
C must be used, which is designed for
C handling the type of difficulty involved.
C = 2 The occurrence of roundoff error is
C detected, which prevents the requested
C tolerance from being achieved.
C The error may be under-estimated.
C = 3 Extremely bad integrand behaviour occurs
C At some points of the integration
C interval.
C = 4 The algorithm does not converge.
C Roundoff error is detected in the
C extrapolation table. It is presumed that
C the requested tolerance cannot be
C achieved, and that the returned result is
C the best which can be obtained.
C = 5 The integral is probably divergent, or
C slowly convergent. It must be noted that
C divergence can occur with any other value
C of IER.GT.0.
C = 6 The input is invalid because
C NPTS2.LT.2 or
C Break points are specified outside
C the integration range or
C (EPSABS.LE.0 and
C EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28))
C or LIMIT.LT.NPTS2.
C RESULT, ABSERR, NEVAL, LAST, RLIST(1),
C and ELIST(1) are set to zero. ALIST(1) and
C BLIST(1) are set to A and B respectively.
C
C ALIST - Real
C Vector of dimension at least LIMIT, the first
C LAST elements of which are the left end points
C of the subintervals in the partition of the given
C integration range (A,B)
C
C BLIST - Real
C Vector of dimension at least LIMIT, the first
C LAST elements of which are the right end points
C of the subintervals in the partition of the given
C integration range (A,B)
C
C RLIST - Real
C Vector of dimension at least LIMIT, the first
C LAST elements of which are the integral
C approximations on the subintervals
C
C ELIST - Real
C Vector of dimension at least LIMIT, the first
C LAST elements of which are the moduli of the
C absolute error estimates on the subintervals
C
C PTS - Real
C Vector of dimension at least NPTS2, containing the
C integration limits and the break points of the
C interval in ascending sequence.
C
C LEVEL - Integer
C Vector of dimension at least LIMIT, containing the
C subdivision levels of the subinterval, i.e. if
C (AA,BB) is a subinterval of (P1,P2) where P1 as
C well as P2 is a user-provided break point or
C integration limit, then (AA,BB) has level L if
C ABS(BB-AA) = ABS(P2-P1)*2**(-L).
C
C NDIN - Integer
C Vector of dimension at least NPTS2, after first
C integration over the intervals (PTS(I)),PTS(I+1),
C I = 0,1, ..., NPTS2-2, the error estimates over
C some of the intervals may have been increased
C artificially, in order to put their subdivision
C forward. If this happens for the subinterval
C numbered K, NDIN(K) is put to 1, otherwise
C NDIN(K) = 0.
C
C IORD - Integer
C Vector of dimension at least LIMIT, the first K
C elements of which are pointers to the
C error estimates over the subintervals,
C such that ELIST(IORD(1)), ..., ELIST(IORD(K))
C form a decreasing sequence, with K = LAST
C If LAST.LE.(LIMIT/2+2), and K = LIMIT+1-LAST
C otherwise
C
C LAST - Integer
C Number of subintervals actually produced in the
C subdivisions process
C
C***REFERENCES (NONE)
C***ROUTINES CALLED QELG, QK21, QPSRT, R1MACH
C***REVISION HISTORY (YYMMDD)
C 800101 DATE WRITTEN
C 890531 Changed all specific intrinsics to generic. (WRB)
C 890831 Modified array declarations. (WRB)
C 890831 REVISION DATE from Version 3.2
C 891214 Prologue converted to Version 4.0 format. (BAB)
C***END PROLOGUE QAGPE
REAL A,ABSEPS,ABSERR,ALIST,AREA,AREA1,AREA12,AREA2,A1,
1 A2,B,BLIST,B1,B2,CORREC,DEFABS,DEFAB1,DEFAB2,
2 DRES,R1MACH,ELIST,EPMACH,EPSABS,EPSREL,ERLARG,ERLAST,ERRBND,
3 ERRMAX,ERROR1,ERRO12,ERROR2,ERRSUM,ERTEST,F,OFLOW,POINTS,PTS,
4 RESA,RESABS,RESEPS,RESULT,RES3LA,RLIST,RLIST2,SIGN,TEMP,
5 UFLOW
INTEGER I,ID,IER,IERRO,IND1,IND2,IORD,IP1,IROFF1,IROFF2,
1 IROFF3,J,JLOW,JUPBND,K,KSGN,KTMIN,LAST,LEVCUR,LEVEL,LEVMAX,
2 LIMIT,MAXERR,NDIN,NEVAL,NINT,NINTP1,NPTS,NPTS2,NRES,
3 NRMAX,NUMRL2
LOGICAL EXTRAP,NOEXT
C
C
DIMENSION ALIST(*),BLIST(*),ELIST(*),IORD(*),
1 LEVEL(*),NDIN(*),POINTS(*),PTS(*),RES3LA(3),
2 RLIST(*),RLIST2(52)
C
EXTERNAL F
C
C THE DIMENSION OF RLIST2 IS DETERMINED BY THE VALUE OF
C LIMEXP IN SUBROUTINE EPSALG (RLIST2 SHOULD BE OF DIMENSION
C (LIMEXP+2) AT LEAST).
C
C
C LIST OF MAJOR VARIABLES
C -----------------------
C
C ALIST - LIST OF LEFT END POINTS OF ALL SUBINTERVALS
C CONSIDERED UP TO NOW
C BLIST - LIST OF RIGHT END POINTS OF ALL SUBINTERVALS
C CONSIDERED UP TO NOW
C RLIST(I) - APPROXIMATION TO THE INTEGRAL OVER
C (ALIST(I),BLIST(I))
C RLIST2 - ARRAY OF DIMENSION AT LEAST LIMEXP+2
C CONTAINING THE PART OF THE EPSILON TABLE WHICH
C IS STILL NEEDED FOR FURTHER COMPUTATIONS
C ELIST(I) - ERROR ESTIMATE APPLYING TO RLIST(I)
C MAXERR - POINTER TO THE INTERVAL WITH LARGEST ERROR
C ESTIMATE
C ERRMAX - ELIST(MAXERR)
C ERLAST - ERROR ON THE INTERVAL CURRENTLY SUBDIVIDED
C (BEFORE THAT SUBDIVISION HAS TAKEN PLACE)
C AREA - SUM OF THE INTEGRALS OVER THE SUBINTERVALS
C ERRSUM - SUM OF THE ERRORS OVER THE SUBINTERVALS
C ERRBND - REQUESTED ACCURACY MAX(EPSABS,EPSREL*
C ABS(RESULT))
C *****1 - VARIABLE FOR THE LEFT SUBINTERVAL
C *****2 - VARIABLE FOR THE RIGHT SUBINTERVAL
C LAST - INDEX FOR SUBDIVISION
C NRES - NUMBER OF CALLS TO THE EXTRAPOLATION ROUTINE
C NUMRL2 - NUMBER OF ELEMENTS IN RLIST2. IF AN
C APPROPRIATE APPROXIMATION TO THE COMPOUNDED
C INTEGRAL HAS BEEN OBTAINED, IT IS PUT IN
C RLIST2(NUMRL2) AFTER NUMRL2 HAS BEEN INCREASED
C BY ONE.
C ERLARG - SUM OF THE ERRORS OVER THE INTERVALS LARGER
C THAN THE SMALLEST INTERVAL CONSIDERED UP TO NOW
C EXTRAP - LOGICAL VARIABLE DENOTING THAT THE ROUTINE
C IS ATTEMPTING TO PERFORM EXTRAPOLATION. I.E.
C BEFORE SUBDIVIDING THE SMALLEST INTERVAL WE
C TRY TO DECREASE THE VALUE OF ERLARG.
C NOEXT - LOGICAL VARIABLE DENOTING THAT EXTRAPOLATION IS
C NO LONGER ALLOWED (TRUE-VALUE)
C
C MACHINE DEPENDENT CONSTANTS
C ---------------------------
C
C EPMACH IS THE LARGEST RELATIVE SPACING.
C UFLOW IS THE SMALLEST POSITIVE MAGNITUDE.
C OFLOW IS THE LARGEST POSITIVE MAGNITUDE.
C
C***FIRST EXECUTABLE STATEMENT QAGPE
EPMACH = R1MACH(4)
C
C TEST ON VALIDITY OF PARAMETERS
C -----------------------------
C
IER = 0
NEVAL = 0
LAST = 0
RESULT = 0.0E+00
ABSERR = 0.0E+00
ALIST(1) = A
BLIST(1) = B
RLIST(1) = 0.0E+00
ELIST(1) = 0.0E+00
IORD(1) = 0
LEVEL(1) = 0
NPTS = NPTS2-2
IF(NPTS2.LT.2.OR.LIMIT.LE.NPTS.OR.(EPSABS.LE.0.0E+00.AND.
1 EPSREL.LT.MAX(0.5E+02*EPMACH,0.5E-14))) IER = 6
IF(IER.EQ.6) GO TO 999
C
C IF ANY BREAK POINTS ARE PROVIDED, SORT THEM INTO AN
C ASCENDING SEQUENCE.
C
SIGN = 1.0E+00
IF(A.GT.B) SIGN = -1.0E+00
PTS(1) = MIN(A,B)
IF(NPTS.EQ.0) GO TO 15
DO 10 I = 1,NPTS
PTS(I+1) = POINTS(I)
10 CONTINUE
15 PTS(NPTS+2) = MAX(A,B)
NINT = NPTS+1
A1 = PTS(1)
IF(NPTS.EQ.0) GO TO 40
NINTP1 = NINT+1
DO 20 I = 1,NINT
IP1 = I+1
DO 20 J = IP1,NINTP1
IF(PTS(I).LE.PTS(J)) GO TO 20
TEMP = PTS(I)
PTS(I) = PTS(J)
PTS(J) = TEMP
20 CONTINUE
IF(PTS(1).NE.MIN(A,B).OR.PTS(NINTP1).NE.
1 MAX(A,B)) IER = 6
IF(IER.EQ.6) GO TO 999
C
C COMPUTE FIRST INTEGRAL AND ERROR APPROXIMATIONS.
C ------------------------------------------------
C
40 RESABS = 0.0E+00
DO 50 I = 1,NINT
B1 = PTS(I+1)
CALL QK21(F,A1,B1,AREA1,ERROR1,DEFABS,RESA)
ABSERR = ABSERR+ERROR1
RESULT = RESULT+AREA1
NDIN(I) = 0
IF(ERROR1.EQ.RESA.AND.ERROR1.NE.0.0E+00) NDIN(I) = 1
RESABS = RESABS+DEFABS
LEVEL(I) = 0
ELIST(I) = ERROR1
ALIST(I) = A1
BLIST(I) = B1
RLIST(I) = AREA1
IORD(I) = I
A1 = B1
50 CONTINUE
ERRSUM = 0.0E+00
DO 55 I = 1,NINT
IF(NDIN(I).EQ.1) ELIST(I) = ABSERR
ERRSUM = ERRSUM+ELIST(I)
55 CONTINUE
C
C TEST ON ACCURACY.
C
LAST = NINT
NEVAL = 21*NINT
DRES = ABS(RESULT)
ERRBND = MAX(EPSABS,EPSREL*DRES)
IF(ABSERR.LE.0.1E+03*EPMACH*RESABS.AND.ABSERR.GT.
1 ERRBND) IER = 2
IF(NINT.EQ.1) GO TO 80
DO 70 I = 1,NPTS
JLOW = I+1
IND1 = IORD(I)
DO 60 J = JLOW,NINT
IND2 = IORD(J)
IF(ELIST(IND1).GT.ELIST(IND2)) GO TO 60
IND1 = IND2
K = J
60 CONTINUE
IF(IND1.EQ.IORD(I)) GO TO 70
IORD(K) = IORD(I)
IORD(I) = IND1
70 CONTINUE
IF(LIMIT.LT.NPTS2) IER = 1
80 IF(IER.NE.0.OR.ABSERR.LE.ERRBND) GO TO 999
C
C INITIALIZATION
C --------------
C
RLIST2(1) = RESULT
MAXERR = IORD(1)
ERRMAX = ELIST(MAXERR)
AREA = RESULT
NRMAX = 1
NRES = 0
NUMRL2 = 1
KTMIN = 0
EXTRAP = .FALSE.
NOEXT = .FALSE.
ERLARG = ERRSUM
ERTEST = ERRBND
LEVMAX = 1
IROFF1 = 0
IROFF2 = 0
IROFF3 = 0
IERRO = 0
UFLOW = R1MACH(1)
OFLOW = R1MACH(2)
ABSERR = OFLOW
KSGN = -1
IF(DRES.GE.(0.1E+01-0.5E+02*EPMACH)*RESABS) KSGN = 1
C
C MAIN DO-LOOP
C ------------
C
DO 160 LAST = NPTS2,LIMIT
C
C BISECT THE SUBINTERVAL WITH THE NRMAX-TH LARGEST
C ERROR ESTIMATE.
C
LEVCUR = LEVEL(MAXERR)+1
A1 = ALIST(MAXERR)
B1 = 0.5E+00*(ALIST(MAXERR)+BLIST(MAXERR))
A2 = B1
B2 = BLIST(MAXERR)
ERLAST = ERRMAX
CALL QK21(F,A1,B1,AREA1,ERROR1,RESA,DEFAB1)
CALL QK21(F,A2,B2,AREA2,ERROR2,RESA,DEFAB2)
C
C IMPROVE PREVIOUS APPROXIMATIONS TO INTEGRAL
C AND ERROR AND TEST FOR ACCURACY.
C
NEVAL = NEVAL+42
AREA12 = AREA1+AREA2
ERRO12 = ERROR1+ERROR2
ERRSUM = ERRSUM+ERRO12-ERRMAX
AREA = AREA+AREA12-RLIST(MAXERR)
IF(DEFAB1.EQ.ERROR1.OR.DEFAB2.EQ.ERROR2) GO TO 95
IF(ABS(RLIST(MAXERR)-AREA12).GT.0.1E-04*ABS(AREA12)
1 .OR.ERRO12.LT.0.99E+00*ERRMAX) GO TO 90
IF(EXTRAP) IROFF2 = IROFF2+1
IF(.NOT.EXTRAP) IROFF1 = IROFF1+1
90 IF(LAST.GT.10.AND.ERRO12.GT.ERRMAX) IROFF3 = IROFF3+1
95 LEVEL(MAXERR) = LEVCUR
LEVEL(LAST) = LEVCUR
RLIST(MAXERR) = AREA1
RLIST(LAST) = AREA2
ERRBND = MAX(EPSABS,EPSREL*ABS(AREA))
C
C TEST FOR ROUNDOFF ERROR AND EVENTUALLY
C SET ERROR FLAG.
C
IF(IROFF1+IROFF2.GE.10.OR.IROFF3.GE.20) IER = 2
IF(IROFF2.GE.5) IERRO = 3
C
C SET ERROR FLAG IN THE CASE THAT THE NUMBER OF
C SUBINTERVALS EQUALS LIMIT.
C
IF(LAST.EQ.LIMIT) IER = 1
C
C SET ERROR FLAG IN THE CASE OF BAD INTEGRAND BEHAVIOUR
C AT A POINT OF THE INTEGRATION RANGE
C
IF(MAX(ABS(A1),ABS(B2)).LE.(0.1E+01+0.1E+03*EPMACH)*
1 (ABS(A2)+0.1E+04*UFLOW)) IER = 4
C
C APPEND THE NEWLY-CREATED INTERVALS TO THE LIST.
C
IF(ERROR2.GT.ERROR1) GO TO 100
ALIST(LAST) = A2
BLIST(MAXERR) = B1
BLIST(LAST) = B2
ELIST(MAXERR) = ERROR1
ELIST(LAST) = ERROR2
GO TO 110
100 ALIST(MAXERR) = A2
ALIST(LAST) = A1
BLIST(LAST) = B1
RLIST(MAXERR) = AREA2
RLIST(LAST) = AREA1
ELIST(MAXERR) = ERROR2
ELIST(LAST) = ERROR1
C
C CALL SUBROUTINE QPSRT TO MAINTAIN THE DESCENDING ORDERING
C IN THE LIST OF ERROR ESTIMATES AND SELECT THE
C SUBINTERVAL WITH NRMAX-TH LARGEST ERROR ESTIMATE (TO BE
C BISECTED NEXT).
C
110 CALL QPSRT(LIMIT,LAST,MAXERR,ERRMAX,ELIST,IORD,NRMAX)
C ***JUMP OUT OF DO-LOOP
IF(ERRSUM.LE.ERRBND) GO TO 190
C ***JUMP OUT OF DO-LOOP
IF(IER.NE.0) GO TO 170
IF(NOEXT) GO TO 160
ERLARG = ERLARG-ERLAST
IF(LEVCUR+1.LE.LEVMAX) ERLARG = ERLARG+ERRO12
IF(EXTRAP) GO TO 120
C
C TEST WHETHER THE INTERVAL TO BE BISECTED NEXT IS THE
C SMALLEST INTERVAL.
C
IF(LEVEL(MAXERR)+1.LE.LEVMAX) GO TO 160
EXTRAP = .TRUE.
NRMAX = 2
120 IF(IERRO.EQ.3.OR.ERLARG.LE.ERTEST) GO TO 140
C
C THE SMALLEST INTERVAL HAS THE LARGEST ERROR.
C BEFORE BISECTING DECREASE THE SUM OF THE ERRORS
C OVER THE LARGER INTERVALS (ERLARG) AND PERFORM
C EXTRAPOLATION.
C
ID = NRMAX
JUPBND = LAST
IF(LAST.GT.(2+LIMIT/2)) JUPBND = LIMIT+3-LAST
DO 130 K = ID,JUPBND
MAXERR = IORD(NRMAX)
ERRMAX = ELIST(MAXERR)
C ***JUMP OUT OF DO-LOOP
IF(LEVEL(MAXERR)+1.LE.LEVMAX) GO TO 160
NRMAX = NRMAX+1
130 CONTINUE
C
C PERFORM EXTRAPOLATION.
C
140 NUMRL2 = NUMRL2+1
RLIST2(NUMRL2) = AREA
IF(NUMRL2.LE.2) GO TO 155
CALL QELG(NUMRL2,RLIST2,RESEPS,ABSEPS,RES3LA,NRES)
KTMIN = KTMIN+1
IF(KTMIN.GT.5.AND.ABSERR.LT.0.1E-02*ERRSUM) IER = 5
IF(ABSEPS.GE.ABSERR) GO TO 150
KTMIN = 0
ABSERR = ABSEPS
RESULT = RESEPS
CORREC = ERLARG
ERTEST = MAX(EPSABS,EPSREL*ABS(RESEPS))
C ***JUMP OUT OF DO-LOOP
IF(ABSERR.LT.ERTEST) GO TO 170
C
C PREPARE BISECTION OF THE SMALLEST INTERVAL.
C
150 IF(NUMRL2.EQ.1) NOEXT = .TRUE.
IF(IER.GE.5) GO TO 170
155 MAXERR = IORD(1)
ERRMAX = ELIST(MAXERR)
NRMAX = 1
EXTRAP = .FALSE.
LEVMAX = LEVMAX+1
ERLARG = ERRSUM
160 CONTINUE
C
C SET THE FINAL RESULT.
C ---------------------
C
C
170 IF(ABSERR.EQ.OFLOW) GO TO 190
IF((IER+IERRO).EQ.0) GO TO 180
IF(IERRO.EQ.3) ABSERR = ABSERR+CORREC
IF(IER.EQ.0) IER = 3
IF(RESULT.NE.0.0E+00.AND.AREA.NE.0.0E+00)GO TO 175
IF(ABSERR.GT.ERRSUM)GO TO 190
IF(AREA.EQ.0.0E+00) GO TO 210
GO TO 180
175 IF(ABSERR/ABS(RESULT).GT.ERRSUM/ABS(AREA))GO TO 190
C
C TEST ON DIVERGENCE.
C
180 IF(KSGN.EQ.(-1).AND.MAX(ABS(RESULT),ABS(AREA)).LE.
1 DEFABS*0.1E-01) GO TO 210
IF(0.1E-01.GT.(RESULT/AREA).OR.(RESULT/AREA).GT.0.1E+03.OR.
1 ERRSUM.GT.ABS(AREA)) IER = 6
GO TO 210
C
C COMPUTE GLOBAL INTEGRAL SUM.
C
190 RESULT = 0.0E+00
DO 200 K = 1,LAST
RESULT = RESULT+RLIST(K)
200 CONTINUE
ABSERR = ERRSUM
210 IF(IER.GT.2) IER = IER - 1
RESULT = RESULT*SIGN
999 RETURN
END