mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-03 23:43:41 +01:00
183 lines
6.3 KiB
FortranFixed
183 lines
6.3 KiB
FortranFixed
|
*DECK QK21
|
||
|
SUBROUTINE QK21 (F, A, B, RESULT, ABSERR, RESABS, RESASC)
|
||
|
C***BEGIN PROLOGUE QK21
|
||
|
C***PURPOSE To compute I = Integral of F over (A,B), with error
|
||
|
C estimate
|
||
|
C J = Integral of ABS(F) over (A,B)
|
||
|
C***LIBRARY SLATEC (QUADPACK)
|
||
|
C***CATEGORY H2A1A2
|
||
|
C***TYPE SINGLE PRECISION (QK21-S, DQK21-D)
|
||
|
C***KEYWORDS 21-POINT GAUSS-KRONROD RULES, QUADPACK, QUADRATURE
|
||
|
C***AUTHOR Piessens, Robert
|
||
|
C Applied Mathematics and Programming Division
|
||
|
C K. U. Leuven
|
||
|
C de Doncker, Elise
|
||
|
C Applied Mathematics and Programming Division
|
||
|
C K. U. Leuven
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C Integration rules
|
||
|
C Standard fortran subroutine
|
||
|
C Real version
|
||
|
C
|
||
|
C PARAMETERS
|
||
|
C ON ENTRY
|
||
|
C F - Real
|
||
|
C Function subprogram defining the integrand
|
||
|
C FUNCTION F(X). The actual name for F needs to be
|
||
|
C Declared E X T E R N A L in the driver program.
|
||
|
C
|
||
|
C A - Real
|
||
|
C Lower limit of integration
|
||
|
C
|
||
|
C B - Real
|
||
|
C Upper limit of integration
|
||
|
C
|
||
|
C ON RETURN
|
||
|
C RESULT - Real
|
||
|
C Approximation to the integral I
|
||
|
C RESULT is computed by applying the 21-POINT
|
||
|
C KRONROD RULE (RESK) obtained by optimal addition
|
||
|
C of abscissae to the 10-POINT GAUSS RULE (RESG).
|
||
|
C
|
||
|
C ABSERR - Real
|
||
|
C Estimate of the modulus of the absolute error,
|
||
|
C which should not exceed ABS(I-RESULT)
|
||
|
C
|
||
|
C RESABS - Real
|
||
|
C Approximation to the integral J
|
||
|
C
|
||
|
C RESASC - Real
|
||
|
C Approximation to the integral of ABS(F-I/(B-A))
|
||
|
C over (A,B)
|
||
|
C
|
||
|
C***REFERENCES (NONE)
|
||
|
C***ROUTINES CALLED R1MACH
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 800101 DATE WRITTEN
|
||
|
C 890531 Changed all specific intrinsics to generic. (WRB)
|
||
|
C 890531 REVISION DATE from Version 3.2
|
||
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C***END PROLOGUE QK21
|
||
|
C
|
||
|
REAL A,ABSC,ABSERR,B,CENTR,DHLGTH,EPMACH,F,FC,FSUM,FVAL1,FVAL2,
|
||
|
1 FV1,FV2,HLGTH,RESABS,RESG,RESK,RESKH,RESULT,R1MACH,UFLOW,WG,WGK,
|
||
|
2 XGK
|
||
|
INTEGER J,JTW,JTWM1
|
||
|
EXTERNAL F
|
||
|
C
|
||
|
DIMENSION FV1(10),FV2(10),WG(5),WGK(11),XGK(11)
|
||
|
C
|
||
|
C THE ABSCISSAE AND WEIGHTS ARE GIVEN FOR THE INTERVAL (-1,1).
|
||
|
C BECAUSE OF SYMMETRY ONLY THE POSITIVE ABSCISSAE AND THEIR
|
||
|
C CORRESPONDING WEIGHTS ARE GIVEN.
|
||
|
C
|
||
|
C XGK - ABSCISSAE OF THE 21-POINT KRONROD RULE
|
||
|
C XGK(2), XGK(4), ... ABSCISSAE OF THE 10-POINT
|
||
|
C GAUSS RULE
|
||
|
C XGK(1), XGK(3), ... ABSCISSAE WHICH ARE OPTIMALLY
|
||
|
C ADDED TO THE 10-POINT GAUSS RULE
|
||
|
C
|
||
|
C WGK - WEIGHTS OF THE 21-POINT KRONROD RULE
|
||
|
C
|
||
|
C WG - WEIGHTS OF THE 10-POINT GAUSS RULE
|
||
|
C
|
||
|
SAVE XGK, WGK, WG
|
||
|
DATA XGK(1),XGK(2),XGK(3),XGK(4),XGK(5),XGK(6),XGK(7),
|
||
|
1 XGK(8),XGK(9),XGK(10),XGK(11)/
|
||
|
2 0.9956571630258081E+00, 0.9739065285171717E+00,
|
||
|
3 0.9301574913557082E+00, 0.8650633666889845E+00,
|
||
|
4 0.7808177265864169E+00, 0.6794095682990244E+00,
|
||
|
5 0.5627571346686047E+00, 0.4333953941292472E+00,
|
||
|
6 0.2943928627014602E+00, 0.1488743389816312E+00,
|
||
|
7 0.0000000000000000E+00/
|
||
|
C
|
||
|
DATA WGK(1),WGK(2),WGK(3),WGK(4),WGK(5),WGK(6),WGK(7),
|
||
|
1 WGK(8),WGK(9),WGK(10),WGK(11)/
|
||
|
2 0.1169463886737187E-01, 0.3255816230796473E-01,
|
||
|
3 0.5475589657435200E-01, 0.7503967481091995E-01,
|
||
|
4 0.9312545458369761E-01, 0.1093871588022976E+00,
|
||
|
5 0.1234919762620659E+00, 0.1347092173114733E+00,
|
||
|
6 0.1427759385770601E+00, 0.1477391049013385E+00,
|
||
|
7 0.1494455540029169E+00/
|
||
|
C
|
||
|
DATA WG(1),WG(2),WG(3),WG(4),WG(5)/
|
||
|
1 0.6667134430868814E-01, 0.1494513491505806E+00,
|
||
|
2 0.2190863625159820E+00, 0.2692667193099964E+00,
|
||
|
3 0.2955242247147529E+00/
|
||
|
C
|
||
|
C
|
||
|
C LIST OF MAJOR VARIABLES
|
||
|
C -----------------------
|
||
|
C
|
||
|
C CENTR - MID POINT OF THE INTERVAL
|
||
|
C HLGTH - HALF-LENGTH OF THE INTERVAL
|
||
|
C ABSC - ABSCISSA
|
||
|
C FVAL* - FUNCTION VALUE
|
||
|
C RESG - RESULT OF THE 10-POINT GAUSS FORMULA
|
||
|
C RESK - RESULT OF THE 21-POINT KRONROD FORMULA
|
||
|
C RESKH - APPROXIMATION TO THE MEAN VALUE OF F OVER (A,B),
|
||
|
C I.E. TO I/(B-A)
|
||
|
C
|
||
|
C
|
||
|
C MACHINE DEPENDENT CONSTANTS
|
||
|
C ---------------------------
|
||
|
C
|
||
|
C EPMACH IS THE LARGEST RELATIVE SPACING.
|
||
|
C UFLOW IS THE SMALLEST POSITIVE MAGNITUDE.
|
||
|
C
|
||
|
C***FIRST EXECUTABLE STATEMENT QK21
|
||
|
EPMACH = R1MACH(4)
|
||
|
UFLOW = R1MACH(1)
|
||
|
C
|
||
|
CENTR = 0.5E+00*(A+B)
|
||
|
HLGTH = 0.5E+00*(B-A)
|
||
|
DHLGTH = ABS(HLGTH)
|
||
|
C
|
||
|
C COMPUTE THE 21-POINT KRONROD APPROXIMATION TO
|
||
|
C THE INTEGRAL, AND ESTIMATE THE ABSOLUTE ERROR.
|
||
|
C
|
||
|
RESG = 0.0E+00
|
||
|
FC = F(CENTR)
|
||
|
RESK = WGK(11)*FC
|
||
|
RESABS = ABS(RESK)
|
||
|
DO 10 J=1,5
|
||
|
JTW = 2*J
|
||
|
ABSC = HLGTH*XGK(JTW)
|
||
|
FVAL1 = F(CENTR-ABSC)
|
||
|
FVAL2 = F(CENTR+ABSC)
|
||
|
FV1(JTW) = FVAL1
|
||
|
FV2(JTW) = FVAL2
|
||
|
FSUM = FVAL1+FVAL2
|
||
|
RESG = RESG+WG(J)*FSUM
|
||
|
RESK = RESK+WGK(JTW)*FSUM
|
||
|
RESABS = RESABS+WGK(JTW)*(ABS(FVAL1)+ABS(FVAL2))
|
||
|
10 CONTINUE
|
||
|
DO 15 J = 1,5
|
||
|
JTWM1 = 2*J-1
|
||
|
ABSC = HLGTH*XGK(JTWM1)
|
||
|
FVAL1 = F(CENTR-ABSC)
|
||
|
FVAL2 = F(CENTR+ABSC)
|
||
|
FV1(JTWM1) = FVAL1
|
||
|
FV2(JTWM1) = FVAL2
|
||
|
FSUM = FVAL1+FVAL2
|
||
|
RESK = RESK+WGK(JTWM1)*FSUM
|
||
|
RESABS = RESABS+WGK(JTWM1)*(ABS(FVAL1)+ABS(FVAL2))
|
||
|
15 CONTINUE
|
||
|
RESKH = RESK*0.5E+00
|
||
|
RESASC = WGK(11)*ABS(FC-RESKH)
|
||
|
DO 20 J=1,10
|
||
|
RESASC = RESASC+WGK(J)*(ABS(FV1(J)-RESKH)+ABS(FV2(J)-RESKH))
|
||
|
20 CONTINUE
|
||
|
RESULT = RESK*HLGTH
|
||
|
RESABS = RESABS*DHLGTH
|
||
|
RESASC = RESASC*DHLGTH
|
||
|
ABSERR = ABS((RESK-RESG)*HLGTH)
|
||
|
IF(RESASC.NE.0.0E+00.AND.ABSERR.NE.0.0E+00)
|
||
|
1 ABSERR = RESASC*MIN(0.1E+01,
|
||
|
2 (0.2E+03*ABSERR/RESASC)**1.5E+00)
|
||
|
IF(RESABS.GT.UFLOW/(0.5E+02*EPMACH)) ABSERR = MAX
|
||
|
1 ((EPMACH*0.5E+02)*RESABS,ABSERR)
|
||
|
RETURN
|
||
|
END
|