mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-04 07:53:38 +01:00
225 lines
6.5 KiB
FortranFixed
225 lines
6.5 KiB
FortranFixed
|
*DECK QZHES
|
||
|
SUBROUTINE QZHES (NM, N, A, B, MATZ, Z)
|
||
|
C***BEGIN PROLOGUE QZHES
|
||
|
C***PURPOSE The first step of the QZ algorithm for solving generalized
|
||
|
C matrix eigenproblems. Accepts a pair of real general
|
||
|
C matrices and reduces one of them to upper Hessenberg
|
||
|
C and the other to upper triangular form using orthogonal
|
||
|
C transformations. Usually followed by QZIT, QZVAL, QZVEC.
|
||
|
C***LIBRARY SLATEC (EISPACK)
|
||
|
C***CATEGORY D4C1B3
|
||
|
C***TYPE SINGLE PRECISION (QZHES-S)
|
||
|
C***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
|
||
|
C***AUTHOR Smith, B. T., et al.
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C This subroutine is the first step of the QZ algorithm
|
||
|
C for solving generalized matrix eigenvalue problems,
|
||
|
C SIAM J. NUMER. ANAL. 10, 241-256(1973) by MOLER and STEWART.
|
||
|
C
|
||
|
C This subroutine accepts a pair of REAL GENERAL matrices and
|
||
|
C reduces one of them to upper Hessenberg form and the other
|
||
|
C to upper triangular form using orthogonal transformations.
|
||
|
C It is usually followed by QZIT, QZVAL and, possibly, QZVEC.
|
||
|
C
|
||
|
C On Input
|
||
|
C
|
||
|
C NM must be set to the row dimension of the two-dimensional
|
||
|
C array parameters, A, B, and Z, as declared in the calling
|
||
|
C program dimension statement. NM is an INTEGER variable.
|
||
|
C
|
||
|
C N is the order of the matrices A and B. N is an INTEGER
|
||
|
C variable. N must be less than or equal to NM.
|
||
|
C
|
||
|
C A contains a real general matrix. A is a two-dimensional
|
||
|
C REAL array, dimensioned A(NM,N).
|
||
|
C
|
||
|
C B contains a real general matrix. B is a two-dimensional
|
||
|
C REAL array, dimensioned B(NM,N).
|
||
|
C
|
||
|
C MATZ should be set to .TRUE. if the right hand transformations
|
||
|
C are to be accumulated for later use in computing
|
||
|
C eigenvectors, and to .FALSE. otherwise. MATZ is a LOGICAL
|
||
|
C variable.
|
||
|
C
|
||
|
C On Output
|
||
|
C
|
||
|
C A has been reduced to upper Hessenberg form. The elements
|
||
|
C below the first subdiagonal have been set to zero.
|
||
|
C
|
||
|
C B has been reduced to upper triangular form. The elements
|
||
|
C below the main diagonal have been set to zero.
|
||
|
C
|
||
|
C Z contains the product of the right hand transformations if
|
||
|
C MATZ has been set to .TRUE. Otherwise, Z is not referenced.
|
||
|
C Z is a two-dimensional REAL array, dimensioned Z(NM,N).
|
||
|
C
|
||
|
C Questions and comments should be directed to B. S. Garbow,
|
||
|
C APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
|
||
|
C ------------------------------------------------------------------
|
||
|
C
|
||
|
C***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
|
||
|
C Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
|
||
|
C system Routines - EISPACK Guide, Springer-Verlag,
|
||
|
C 1976.
|
||
|
C***ROUTINES CALLED (NONE)
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 760101 DATE WRITTEN
|
||
|
C 890831 Modified array declarations. (WRB)
|
||
|
C 890831 REVISION DATE from Version 3.2
|
||
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C 920501 Reformatted the REFERENCES section. (WRB)
|
||
|
C***END PROLOGUE QZHES
|
||
|
C
|
||
|
INTEGER I,J,K,L,N,LB,L1,NM,NK1,NM1,NM2
|
||
|
REAL A(NM,*),B(NM,*),Z(NM,*)
|
||
|
REAL R,S,T,U1,U2,V1,V2,RHO
|
||
|
LOGICAL MATZ
|
||
|
C
|
||
|
C .......... INITIALIZE Z ..........
|
||
|
C***FIRST EXECUTABLE STATEMENT QZHES
|
||
|
IF (.NOT. MATZ) GO TO 10
|
||
|
C
|
||
|
DO 3 I = 1, N
|
||
|
C
|
||
|
DO 2 J = 1, N
|
||
|
Z(I,J) = 0.0E0
|
||
|
2 CONTINUE
|
||
|
C
|
||
|
Z(I,I) = 1.0E0
|
||
|
3 CONTINUE
|
||
|
C .......... REDUCE B TO UPPER TRIANGULAR FORM ..........
|
||
|
10 IF (N .LE. 1) GO TO 170
|
||
|
NM1 = N - 1
|
||
|
C
|
||
|
DO 100 L = 1, NM1
|
||
|
L1 = L + 1
|
||
|
S = 0.0E0
|
||
|
C
|
||
|
DO 20 I = L1, N
|
||
|
S = S + ABS(B(I,L))
|
||
|
20 CONTINUE
|
||
|
C
|
||
|
IF (S .EQ. 0.0E0) GO TO 100
|
||
|
S = S + ABS(B(L,L))
|
||
|
R = 0.0E0
|
||
|
C
|
||
|
DO 25 I = L, N
|
||
|
B(I,L) = B(I,L) / S
|
||
|
R = R + B(I,L)**2
|
||
|
25 CONTINUE
|
||
|
C
|
||
|
R = SIGN(SQRT(R),B(L,L))
|
||
|
B(L,L) = B(L,L) + R
|
||
|
RHO = R * B(L,L)
|
||
|
C
|
||
|
DO 50 J = L1, N
|
||
|
T = 0.0E0
|
||
|
C
|
||
|
DO 30 I = L, N
|
||
|
T = T + B(I,L) * B(I,J)
|
||
|
30 CONTINUE
|
||
|
C
|
||
|
T = -T / RHO
|
||
|
C
|
||
|
DO 40 I = L, N
|
||
|
B(I,J) = B(I,J) + T * B(I,L)
|
||
|
40 CONTINUE
|
||
|
C
|
||
|
50 CONTINUE
|
||
|
C
|
||
|
DO 80 J = 1, N
|
||
|
T = 0.0E0
|
||
|
C
|
||
|
DO 60 I = L, N
|
||
|
T = T + B(I,L) * A(I,J)
|
||
|
60 CONTINUE
|
||
|
C
|
||
|
T = -T / RHO
|
||
|
C
|
||
|
DO 70 I = L, N
|
||
|
A(I,J) = A(I,J) + T * B(I,L)
|
||
|
70 CONTINUE
|
||
|
C
|
||
|
80 CONTINUE
|
||
|
C
|
||
|
B(L,L) = -S * R
|
||
|
C
|
||
|
DO 90 I = L1, N
|
||
|
B(I,L) = 0.0E0
|
||
|
90 CONTINUE
|
||
|
C
|
||
|
100 CONTINUE
|
||
|
C .......... REDUCE A TO UPPER HESSENBERG FORM, WHILE
|
||
|
C KEEPING B TRIANGULAR ..........
|
||
|
IF (N .EQ. 2) GO TO 170
|
||
|
NM2 = N - 2
|
||
|
C
|
||
|
DO 160 K = 1, NM2
|
||
|
NK1 = NM1 - K
|
||
|
C .......... FOR L=N-1 STEP -1 UNTIL K+1 DO -- ..........
|
||
|
DO 150 LB = 1, NK1
|
||
|
L = N - LB
|
||
|
L1 = L + 1
|
||
|
C .......... ZERO A(L+1,K) ..........
|
||
|
S = ABS(A(L,K)) + ABS(A(L1,K))
|
||
|
IF (S .EQ. 0.0E0) GO TO 150
|
||
|
U1 = A(L,K) / S
|
||
|
U2 = A(L1,K) / S
|
||
|
R = SIGN(SQRT(U1*U1+U2*U2),U1)
|
||
|
V1 = -(U1 + R) / R
|
||
|
V2 = -U2 / R
|
||
|
U2 = V2 / V1
|
||
|
C
|
||
|
DO 110 J = K, N
|
||
|
T = A(L,J) + U2 * A(L1,J)
|
||
|
A(L,J) = A(L,J) + T * V1
|
||
|
A(L1,J) = A(L1,J) + T * V2
|
||
|
110 CONTINUE
|
||
|
C
|
||
|
A(L1,K) = 0.0E0
|
||
|
C
|
||
|
DO 120 J = L, N
|
||
|
T = B(L,J) + U2 * B(L1,J)
|
||
|
B(L,J) = B(L,J) + T * V1
|
||
|
B(L1,J) = B(L1,J) + T * V2
|
||
|
120 CONTINUE
|
||
|
C .......... ZERO B(L+1,L) ..........
|
||
|
S = ABS(B(L1,L1)) + ABS(B(L1,L))
|
||
|
IF (S .EQ. 0.0E0) GO TO 150
|
||
|
U1 = B(L1,L1) / S
|
||
|
U2 = B(L1,L) / S
|
||
|
R = SIGN(SQRT(U1*U1+U2*U2),U1)
|
||
|
V1 = -(U1 + R) / R
|
||
|
V2 = -U2 / R
|
||
|
U2 = V2 / V1
|
||
|
C
|
||
|
DO 130 I = 1, L1
|
||
|
T = B(I,L1) + U2 * B(I,L)
|
||
|
B(I,L1) = B(I,L1) + T * V1
|
||
|
B(I,L) = B(I,L) + T * V2
|
||
|
130 CONTINUE
|
||
|
C
|
||
|
B(L1,L) = 0.0E0
|
||
|
C
|
||
|
DO 140 I = 1, N
|
||
|
T = A(I,L1) + U2 * A(I,L)
|
||
|
A(I,L1) = A(I,L1) + T * V1
|
||
|
A(I,L) = A(I,L) + T * V2
|
||
|
140 CONTINUE
|
||
|
C
|
||
|
IF (.NOT. MATZ) GO TO 150
|
||
|
C
|
||
|
DO 145 I = 1, N
|
||
|
T = Z(I,L1) + U2 * Z(I,L)
|
||
|
Z(I,L1) = Z(I,L1) + T * V1
|
||
|
Z(I,L) = Z(I,L) + T * V2
|
||
|
145 CONTINUE
|
||
|
C
|
||
|
150 CONTINUE
|
||
|
C
|
||
|
160 CONTINUE
|
||
|
C
|
||
|
170 RETURN
|
||
|
END
|