mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-03 23:43:41 +01:00
311 lines
11 KiB
FortranFixed
311 lines
11 KiB
FortranFixed
|
*DECK QZVAL
|
||
|
SUBROUTINE QZVAL (NM, N, A, B, ALFR, ALFI, BETA, MATZ, Z)
|
||
|
C***BEGIN PROLOGUE QZVAL
|
||
|
C***PURPOSE The third step of the QZ algorithm for generalized
|
||
|
C eigenproblems. Accepts a pair of real matrices, one in
|
||
|
C quasi-triangular form and the other in upper triangular
|
||
|
C form and computes the eigenvalues of the associated
|
||
|
C eigenproblem. Usually preceded by QZHES, QZIT, and
|
||
|
C followed by QZVEC.
|
||
|
C***LIBRARY SLATEC (EISPACK)
|
||
|
C***CATEGORY D4C2C
|
||
|
C***TYPE SINGLE PRECISION (QZVAL-S)
|
||
|
C***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
|
||
|
C***AUTHOR Smith, B. T., et al.
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C This subroutine is the third step of the QZ algorithm
|
||
|
C for solving generalized matrix eigenvalue problems,
|
||
|
C SIAM J. NUMER. ANAL. 10, 241-256(1973) by MOLER and STEWART.
|
||
|
C
|
||
|
C This subroutine accepts a pair of REAL matrices, one of them
|
||
|
C in quasi-triangular form and the other in upper triangular form.
|
||
|
C It reduces the quasi-triangular matrix further, so that any
|
||
|
C remaining 2-by-2 blocks correspond to pairs of complex
|
||
|
C eigenvalues, and returns quantities whose ratios give the
|
||
|
C generalized eigenvalues. It is usually preceded by QZHES
|
||
|
C and QZIT and may be followed by QZVEC.
|
||
|
C
|
||
|
C On Input
|
||
|
C
|
||
|
C NM must be set to the row dimension of the two-dimensional
|
||
|
C array parameters, A, B, and Z, as declared in the calling
|
||
|
C program dimension statement. NM is an INTEGER variable.
|
||
|
C
|
||
|
C N is the order of the matrices A and B. N is an INTEGER
|
||
|
C variable. N must be less than or equal to NM.
|
||
|
C
|
||
|
C A contains a real upper quasi-triangular matrix. A is a two-
|
||
|
C dimensional REAL array, dimensioned A(NM,N).
|
||
|
C
|
||
|
C B contains a real upper triangular matrix. In addition,
|
||
|
C location B(N,1) contains the tolerance quantity (EPSB)
|
||
|
C computed and saved in QZIT. B is a two-dimensional REAL
|
||
|
C array, dimensioned B(NM,N).
|
||
|
C
|
||
|
C MATZ should be set to .TRUE. if the right hand transformations
|
||
|
C are to be accumulated for later use in computing
|
||
|
C eigenvectors, and to .FALSE. otherwise. MATZ is a LOGICAL
|
||
|
C variable.
|
||
|
C
|
||
|
C Z contains, if MATZ has been set to .TRUE., the transformation
|
||
|
C matrix produced in the reductions by QZHES and QZIT, if
|
||
|
C performed, or else the identity matrix. If MATZ has been set
|
||
|
C to .FALSE., Z is not referenced. Z is a two-dimensional REAL
|
||
|
C array, dimensioned Z(NM,N).
|
||
|
C
|
||
|
C On Output
|
||
|
C
|
||
|
C A has been reduced further to a quasi-triangular matrix in
|
||
|
C which all nonzero subdiagonal elements correspond to pairs
|
||
|
C of complex eigenvalues.
|
||
|
C
|
||
|
C B is still in upper triangular form, although its elements
|
||
|
C have been altered. B(N,1) is unaltered.
|
||
|
C
|
||
|
C ALFR and ALFI contain the real and imaginary parts of the
|
||
|
C diagonal elements of the triangular matrix that would be
|
||
|
C obtained if A were reduced completely to triangular form
|
||
|
C by unitary transformations. Non-zero values of ALFI occur
|
||
|
C in pairs, the first member positive and the second negative.
|
||
|
C ALFR and ALFI are one-dimensional REAL arrays, dimensioned
|
||
|
C ALFR(N) and ALFI(N).
|
||
|
C
|
||
|
C BETA contains the diagonal elements of the corresponding B,
|
||
|
C normalized to be real and non-negative. The generalized
|
||
|
C eigenvalues are then the ratios ((ALFR+I*ALFI)/BETA).
|
||
|
C BETA is a one-dimensional REAL array, dimensioned BETA(N).
|
||
|
C
|
||
|
C Z contains the product of the right hand transformations
|
||
|
C (for all three steps) if MATZ has been set to .TRUE.
|
||
|
C
|
||
|
C Questions and comments should be directed to B. S. Garbow,
|
||
|
C APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
|
||
|
C ------------------------------------------------------------------
|
||
|
C
|
||
|
C***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
|
||
|
C Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
|
||
|
C system Routines - EISPACK Guide, Springer-Verlag,
|
||
|
C 1976.
|
||
|
C***ROUTINES CALLED (NONE)
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 760101 DATE WRITTEN
|
||
|
C 890831 Modified array declarations. (WRB)
|
||
|
C 890831 REVISION DATE from Version 3.2
|
||
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C 920501 Reformatted the REFERENCES section. (WRB)
|
||
|
C***END PROLOGUE QZVAL
|
||
|
C
|
||
|
INTEGER I,J,N,EN,NA,NM,NN,ISW
|
||
|
REAL A(NM,*),B(NM,*),ALFR(*),ALFI(*),BETA(*),Z(NM,*)
|
||
|
REAL C,D,E,R,S,T,AN,A1,A2,BN,CQ,CZ,DI,DR,EI,TI,TR
|
||
|
REAL U1,U2,V1,V2,A1I,A11,A12,A2I,A21,A22,B11,B12,B22
|
||
|
REAL SQI,SQR,SSI,SSR,SZI,SZR,A11I,A11R,A12I,A12R
|
||
|
REAL A22I,A22R,EPSB
|
||
|
LOGICAL MATZ
|
||
|
C
|
||
|
C***FIRST EXECUTABLE STATEMENT QZVAL
|
||
|
EPSB = B(N,1)
|
||
|
ISW = 1
|
||
|
C .......... FIND EIGENVALUES OF QUASI-TRIANGULAR MATRICES.
|
||
|
C FOR EN=N STEP -1 UNTIL 1 DO -- ..........
|
||
|
DO 510 NN = 1, N
|
||
|
EN = N + 1 - NN
|
||
|
NA = EN - 1
|
||
|
IF (ISW .EQ. 2) GO TO 505
|
||
|
IF (EN .EQ. 1) GO TO 410
|
||
|
IF (A(EN,NA) .NE. 0.0E0) GO TO 420
|
||
|
C .......... 1-BY-1 BLOCK, ONE REAL ROOT ..........
|
||
|
410 ALFR(EN) = A(EN,EN)
|
||
|
IF (B(EN,EN) .LT. 0.0E0) ALFR(EN) = -ALFR(EN)
|
||
|
BETA(EN) = ABS(B(EN,EN))
|
||
|
ALFI(EN) = 0.0E0
|
||
|
GO TO 510
|
||
|
C .......... 2-BY-2 BLOCK ..........
|
||
|
420 IF (ABS(B(NA,NA)) .LE. EPSB) GO TO 455
|
||
|
IF (ABS(B(EN,EN)) .GT. EPSB) GO TO 430
|
||
|
A1 = A(EN,EN)
|
||
|
A2 = A(EN,NA)
|
||
|
BN = 0.0E0
|
||
|
GO TO 435
|
||
|
430 AN = ABS(A(NA,NA)) + ABS(A(NA,EN)) + ABS(A(EN,NA))
|
||
|
1 + ABS(A(EN,EN))
|
||
|
BN = ABS(B(NA,NA)) + ABS(B(NA,EN)) + ABS(B(EN,EN))
|
||
|
A11 = A(NA,NA) / AN
|
||
|
A12 = A(NA,EN) / AN
|
||
|
A21 = A(EN,NA) / AN
|
||
|
A22 = A(EN,EN) / AN
|
||
|
B11 = B(NA,NA) / BN
|
||
|
B12 = B(NA,EN) / BN
|
||
|
B22 = B(EN,EN) / BN
|
||
|
E = A11 / B11
|
||
|
EI = A22 / B22
|
||
|
S = A21 / (B11 * B22)
|
||
|
T = (A22 - E * B22) / B22
|
||
|
IF (ABS(E) .LE. ABS(EI)) GO TO 431
|
||
|
E = EI
|
||
|
T = (A11 - E * B11) / B11
|
||
|
431 C = 0.5E0 * (T - S * B12)
|
||
|
D = C * C + S * (A12 - E * B12)
|
||
|
IF (D .LT. 0.0E0) GO TO 480
|
||
|
C .......... TWO REAL ROOTS.
|
||
|
C ZERO BOTH A(EN,NA) AND B(EN,NA) ..........
|
||
|
E = E + (C + SIGN(SQRT(D),C))
|
||
|
A11 = A11 - E * B11
|
||
|
A12 = A12 - E * B12
|
||
|
A22 = A22 - E * B22
|
||
|
IF (ABS(A11) + ABS(A12) .LT.
|
||
|
1 ABS(A21) + ABS(A22)) GO TO 432
|
||
|
A1 = A12
|
||
|
A2 = A11
|
||
|
GO TO 435
|
||
|
432 A1 = A22
|
||
|
A2 = A21
|
||
|
C .......... CHOOSE AND APPLY REAL Z ..........
|
||
|
435 S = ABS(A1) + ABS(A2)
|
||
|
U1 = A1 / S
|
||
|
U2 = A2 / S
|
||
|
R = SIGN(SQRT(U1*U1+U2*U2),U1)
|
||
|
V1 = -(U1 + R) / R
|
||
|
V2 = -U2 / R
|
||
|
U2 = V2 / V1
|
||
|
C
|
||
|
DO 440 I = 1, EN
|
||
|
T = A(I,EN) + U2 * A(I,NA)
|
||
|
A(I,EN) = A(I,EN) + T * V1
|
||
|
A(I,NA) = A(I,NA) + T * V2
|
||
|
T = B(I,EN) + U2 * B(I,NA)
|
||
|
B(I,EN) = B(I,EN) + T * V1
|
||
|
B(I,NA) = B(I,NA) + T * V2
|
||
|
440 CONTINUE
|
||
|
C
|
||
|
IF (.NOT. MATZ) GO TO 450
|
||
|
C
|
||
|
DO 445 I = 1, N
|
||
|
T = Z(I,EN) + U2 * Z(I,NA)
|
||
|
Z(I,EN) = Z(I,EN) + T * V1
|
||
|
Z(I,NA) = Z(I,NA) + T * V2
|
||
|
445 CONTINUE
|
||
|
C
|
||
|
450 IF (BN .EQ. 0.0E0) GO TO 475
|
||
|
IF (AN .LT. ABS(E) * BN) GO TO 455
|
||
|
A1 = B(NA,NA)
|
||
|
A2 = B(EN,NA)
|
||
|
GO TO 460
|
||
|
455 A1 = A(NA,NA)
|
||
|
A2 = A(EN,NA)
|
||
|
C .......... CHOOSE AND APPLY REAL Q ..........
|
||
|
460 S = ABS(A1) + ABS(A2)
|
||
|
IF (S .EQ. 0.0E0) GO TO 475
|
||
|
U1 = A1 / S
|
||
|
U2 = A2 / S
|
||
|
R = SIGN(SQRT(U1*U1+U2*U2),U1)
|
||
|
V1 = -(U1 + R) / R
|
||
|
V2 = -U2 / R
|
||
|
U2 = V2 / V1
|
||
|
C
|
||
|
DO 470 J = NA, N
|
||
|
T = A(NA,J) + U2 * A(EN,J)
|
||
|
A(NA,J) = A(NA,J) + T * V1
|
||
|
A(EN,J) = A(EN,J) + T * V2
|
||
|
T = B(NA,J) + U2 * B(EN,J)
|
||
|
B(NA,J) = B(NA,J) + T * V1
|
||
|
B(EN,J) = B(EN,J) + T * V2
|
||
|
470 CONTINUE
|
||
|
C
|
||
|
475 A(EN,NA) = 0.0E0
|
||
|
B(EN,NA) = 0.0E0
|
||
|
ALFR(NA) = A(NA,NA)
|
||
|
ALFR(EN) = A(EN,EN)
|
||
|
IF (B(NA,NA) .LT. 0.0E0) ALFR(NA) = -ALFR(NA)
|
||
|
IF (B(EN,EN) .LT. 0.0E0) ALFR(EN) = -ALFR(EN)
|
||
|
BETA(NA) = ABS(B(NA,NA))
|
||
|
BETA(EN) = ABS(B(EN,EN))
|
||
|
ALFI(EN) = 0.0E0
|
||
|
ALFI(NA) = 0.0E0
|
||
|
GO TO 505
|
||
|
C .......... TWO COMPLEX ROOTS ..........
|
||
|
480 E = E + C
|
||
|
EI = SQRT(-D)
|
||
|
A11R = A11 - E * B11
|
||
|
A11I = EI * B11
|
||
|
A12R = A12 - E * B12
|
||
|
A12I = EI * B12
|
||
|
A22R = A22 - E * B22
|
||
|
A22I = EI * B22
|
||
|
IF (ABS(A11R) + ABS(A11I) + ABS(A12R) + ABS(A12I) .LT.
|
||
|
1 ABS(A21) + ABS(A22R) + ABS(A22I)) GO TO 482
|
||
|
A1 = A12R
|
||
|
A1I = A12I
|
||
|
A2 = -A11R
|
||
|
A2I = -A11I
|
||
|
GO TO 485
|
||
|
482 A1 = A22R
|
||
|
A1I = A22I
|
||
|
A2 = -A21
|
||
|
A2I = 0.0E0
|
||
|
C .......... CHOOSE COMPLEX Z ..........
|
||
|
485 CZ = SQRT(A1*A1+A1I*A1I)
|
||
|
IF (CZ .EQ. 0.0E0) GO TO 487
|
||
|
SZR = (A1 * A2 + A1I * A2I) / CZ
|
||
|
SZI = (A1 * A2I - A1I * A2) / CZ
|
||
|
R = SQRT(CZ*CZ+SZR*SZR+SZI*SZI)
|
||
|
CZ = CZ / R
|
||
|
SZR = SZR / R
|
||
|
SZI = SZI / R
|
||
|
GO TO 490
|
||
|
487 SZR = 1.0E0
|
||
|
SZI = 0.0E0
|
||
|
490 IF (AN .LT. (ABS(E) + EI) * BN) GO TO 492
|
||
|
A1 = CZ * B11 + SZR * B12
|
||
|
A1I = SZI * B12
|
||
|
A2 = SZR * B22
|
||
|
A2I = SZI * B22
|
||
|
GO TO 495
|
||
|
492 A1 = CZ * A11 + SZR * A12
|
||
|
A1I = SZI * A12
|
||
|
A2 = CZ * A21 + SZR * A22
|
||
|
A2I = SZI * A22
|
||
|
C .......... CHOOSE COMPLEX Q ..........
|
||
|
495 CQ = SQRT(A1*A1+A1I*A1I)
|
||
|
IF (CQ .EQ. 0.0E0) GO TO 497
|
||
|
SQR = (A1 * A2 + A1I * A2I) / CQ
|
||
|
SQI = (A1 * A2I - A1I * A2) / CQ
|
||
|
R = SQRT(CQ*CQ+SQR*SQR+SQI*SQI)
|
||
|
CQ = CQ / R
|
||
|
SQR = SQR / R
|
||
|
SQI = SQI / R
|
||
|
GO TO 500
|
||
|
497 SQR = 1.0E0
|
||
|
SQI = 0.0E0
|
||
|
C .......... COMPUTE DIAGONAL ELEMENTS THAT WOULD RESULT
|
||
|
C IF TRANSFORMATIONS WERE APPLIED ..........
|
||
|
500 SSR = SQR * SZR + SQI * SZI
|
||
|
SSI = SQR * SZI - SQI * SZR
|
||
|
I = 1
|
||
|
TR = CQ * CZ * A11 + CQ * SZR * A12 + SQR * CZ * A21
|
||
|
1 + SSR * A22
|
||
|
TI = CQ * SZI * A12 - SQI * CZ * A21 + SSI * A22
|
||
|
DR = CQ * CZ * B11 + CQ * SZR * B12 + SSR * B22
|
||
|
DI = CQ * SZI * B12 + SSI * B22
|
||
|
GO TO 503
|
||
|
502 I = 2
|
||
|
TR = SSR * A11 - SQR * CZ * A12 - CQ * SZR * A21
|
||
|
1 + CQ * CZ * A22
|
||
|
TI = -SSI * A11 - SQI * CZ * A12 + CQ * SZI * A21
|
||
|
DR = SSR * B11 - SQR * CZ * B12 + CQ * CZ * B22
|
||
|
DI = -SSI * B11 - SQI * CZ * B12
|
||
|
503 T = TI * DR - TR * DI
|
||
|
J = NA
|
||
|
IF (T .LT. 0.0E0) J = EN
|
||
|
R = SQRT(DR*DR+DI*DI)
|
||
|
BETA(J) = BN * R
|
||
|
ALFR(J) = AN * (TR * DR + TI * DI) / R
|
||
|
ALFI(J) = AN * T / R
|
||
|
IF (I .EQ. 1) GO TO 502
|
||
|
505 ISW = 3 - ISW
|
||
|
510 CONTINUE
|
||
|
C
|
||
|
RETURN
|
||
|
END
|