mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-04 07:53:38 +01:00
221 lines
7.5 KiB
FortranFixed
221 lines
7.5 KiB
FortranFixed
|
*DECK R9KNUS
|
||
|
SUBROUTINE R9KNUS (XNU, X, BKNU, BKNU1, ISWTCH)
|
||
|
C***BEGIN PROLOGUE R9KNUS
|
||
|
C***SUBSIDIARY
|
||
|
C***PURPOSE Compute Bessel functions EXP(X)*K-SUB-XNU(X) and EXP(X)*
|
||
|
C K-SUB-XNU+1(X) for 0.0 .LE. XNU .LT. 1.0.
|
||
|
C***LIBRARY SLATEC (FNLIB)
|
||
|
C***CATEGORY C10B3
|
||
|
C***TYPE SINGLE PRECISION (R9KNUS-S, D9KNUS-D)
|
||
|
C***KEYWORDS BESSEL FUNCTION, FNLIB, SPECIAL FUNCTIONS
|
||
|
C***AUTHOR Fullerton, W., (LANL)
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C Compute Bessel functions EXP(X) * K-sub-XNU (X) and
|
||
|
C EXP(X) * K-sub-XNU+1 (X) for 0.0 .LE. XNU .LT. 1.0 .
|
||
|
C
|
||
|
C Series for C0K on the interval 0. to 2.50000D-01
|
||
|
C with weighted error 1.60E-17
|
||
|
C log weighted error 16.79
|
||
|
C significant figures required 15.99
|
||
|
C decimal places required 17.40
|
||
|
C
|
||
|
C Series for ZNU1 on the interval -7.00000D-01 to 0.
|
||
|
C with weighted error 1.43E-17
|
||
|
C log weighted error 16.85
|
||
|
C significant figures required 16.08
|
||
|
C decimal places required 17.38
|
||
|
C
|
||
|
C***REFERENCES (NONE)
|
||
|
C***ROUTINES CALLED CSEVL, GAMMA, INITS, R1MACH, XERMSG
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 770601 DATE WRITTEN
|
||
|
C 890531 Changed all specific intrinsics to generic. (WRB)
|
||
|
C 890531 REVISION DATE from Version 3.2
|
||
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
|
||
|
C 900720 Routine changed from user-callable to subsidiary. (WRB)
|
||
|
C 900727 Added EXTERNAL statement. (WRB)
|
||
|
C 920618 Removed space from variable names. (RWC, WRB)
|
||
|
C***END PROLOGUE R9KNUS
|
||
|
DIMENSION ALPHA(15), BETA(15), A(15), C0KCS(16), ZNU1CS(12)
|
||
|
LOGICAL FIRST
|
||
|
EXTERNAL GAMMA
|
||
|
SAVE C0KCS, ZNU1CS, EULER, SQPI2, ALN2, NTC0K, NTZNU1,
|
||
|
1 XNUSML, XSML, ALNSML, ALNBIG, ALNEPS, FIRST
|
||
|
DATA C0KCS( 1) / .0601830572 42626108E0 /
|
||
|
DATA C0KCS( 2) / -.1536487143 3017286E0 /
|
||
|
DATA C0KCS( 3) / -.0117511760 08210492E0 /
|
||
|
DATA C0KCS( 4) / -.0008524878 88919795E0 /
|
||
|
DATA C0KCS( 5) / -.0000613298 38767496E0 /
|
||
|
DATA C0KCS( 6) / -.0000044052 28124551E0 /
|
||
|
DATA C0KCS( 7) / -.0000003163 12467283E0 /
|
||
|
DATA C0KCS( 8) / -.0000000227 10719382E0 /
|
||
|
DATA C0KCS( 9) / -.0000000016 30564460E0 /
|
||
|
DATA C0KCS(10) / -.0000000001 17069392E0 /
|
||
|
DATA C0KCS(11) / -.0000000000 08405206E0 /
|
||
|
DATA C0KCS(12) / -.0000000000 00603466E0 /
|
||
|
DATA C0KCS(13) / -.0000000000 00043326E0 /
|
||
|
DATA C0KCS(14) / -.0000000000 00003110E0 /
|
||
|
DATA C0KCS(15) / -.0000000000 00000223E0 /
|
||
|
DATA C0KCS(16) / -.0000000000 00000016E0 /
|
||
|
DATA ZNU1CS( 1) / .2033067569 9419173E0 /
|
||
|
DATA ZNU1CS( 2) / .1400779334 1321977E0 /
|
||
|
DATA ZNU1CS( 3) / .0079167969 61001613E0 /
|
||
|
DATA ZNU1CS( 4) / .0003398011 82532104E0 /
|
||
|
DATA ZNU1CS( 5) / .0000117419 75688989E0 /
|
||
|
DATA ZNU1CS( 6) / .0000003393 57570612E0 /
|
||
|
DATA ZNU1CS( 7) / .0000000084 25941769E0 /
|
||
|
DATA ZNU1CS( 8) / .0000000001 83336677E0 /
|
||
|
DATA ZNU1CS( 9) / .0000000000 03549698E0 /
|
||
|
DATA ZNU1CS(10) / .0000000000 00061903E0 /
|
||
|
DATA ZNU1CS(11) / .0000000000 00000981E0 /
|
||
|
DATA ZNU1CS(12) / .0000000000 00000014E0 /
|
||
|
DATA EULER / 0.5772156649 0153286E0 /
|
||
|
DATA SQPI2 / 1.253314137 3155003E0 /
|
||
|
DATA ALN2 / 0.693147180 55994531E0 /
|
||
|
DATA FIRST /.TRUE./
|
||
|
C***FIRST EXECUTABLE STATEMENT R9KNUS
|
||
|
IF (FIRST) THEN
|
||
|
NTC0K = INITS (C0KCS, 16, 0.1*R1MACH(3))
|
||
|
NTZNU1 = INITS (ZNU1CS, 12, 0.1*R1MACH(3))
|
||
|
C
|
||
|
XNUSML = SQRT (R1MACH(3)/8.0)
|
||
|
XSML = 0.1*R1MACH(3)
|
||
|
ALNSML = LOG (R1MACH(1))
|
||
|
ALNBIG = LOG (R1MACH(2))
|
||
|
ALNEPS = LOG (0.1*R1MACH(3))
|
||
|
ENDIF
|
||
|
FIRST = .FALSE.
|
||
|
C
|
||
|
IF (XNU .LT. 0. .OR. XNU .GE. 1.0) CALL XERMSG ('SLATEC',
|
||
|
+ 'R9KNUS', 'XNU MUST BE GE 0 AND LT 1', 1, 2)
|
||
|
IF (X .LE. 0.) CALL XERMSG ('SLATEC', 'R9KNUS', 'X MUST BE GT 0',
|
||
|
+ 2, 2)
|
||
|
C
|
||
|
ISWTCH = 0
|
||
|
IF (X.GT.2.0) GO TO 50
|
||
|
C
|
||
|
C X IS SMALL. COMPUTE K-SUB-XNU (X) AND THE DERIVATIVE OF K-SUB-XNU (X)
|
||
|
C THEN FIND K-SUB-XNU+1 (X). XNU IS REDUCED TO THE INTERVAL (-.5,+.5)
|
||
|
C THEN TO (0., .5), BECAUSE K OF NEGATIVE ORDER (-NU) = K OF POSITIVE
|
||
|
C ORDER (+NU).
|
||
|
C
|
||
|
V = XNU
|
||
|
IF (XNU.GT.0.5) V = 1.0 - XNU
|
||
|
C
|
||
|
C CAREFULLY FIND (X/2)**XNU AND Z**XNU WHERE Z = X*X/4.
|
||
|
ALNZ = 2.0 * (LOG(X) - ALN2)
|
||
|
C
|
||
|
IF (X.GT.XNU) GO TO 20
|
||
|
IF (-0.5*XNU*ALNZ-ALN2-LOG(XNU) .GT. ALNBIG) CALL XERMSG
|
||
|
+ ('SLATEC', 'R9KNUS', 'X SO SMALL BESSEL K-SUB-XNU OVERFLOWS',
|
||
|
+ 3, 2)
|
||
|
C
|
||
|
20 VLNZ = V*ALNZ
|
||
|
X2TOV = EXP (0.5*VLNZ)
|
||
|
ZTOV = 0.0
|
||
|
IF (VLNZ.GT.ALNSML) ZTOV = X2TOV**2
|
||
|
C
|
||
|
A0 = 0.5*GAMMA(1.0+V)
|
||
|
B0 = 0.5*GAMMA(1.0-V)
|
||
|
C0 = -EULER
|
||
|
IF (ZTOV.GT.0.5 .AND. V.GT.XNUSML) C0 = -0.75 +
|
||
|
1 CSEVL ((8.0*V)*V-1., C0KCS, NTC0K)
|
||
|
C
|
||
|
IF (ZTOV.LE.0.5) ALPHA(1) = (A0-ZTOV*B0)/V
|
||
|
IF (ZTOV.GT.0.5) ALPHA(1) = C0 - ALNZ*(0.75 +
|
||
|
1 CSEVL (VLNZ/0.35+1.0, ZNU1CS, NTZNU1))*B0
|
||
|
BETA(1) = -0.5*(A0+ZTOV*B0)
|
||
|
C
|
||
|
Z = 0.0
|
||
|
IF (X.GT.XSML) Z = 0.25*X*X
|
||
|
NTERMS = MAX (2.0, 11.0+(8.*ALNZ-25.19-ALNEPS)/(4.28-ALNZ))
|
||
|
DO 30 I=2,NTERMS
|
||
|
XI = I - 1
|
||
|
A0 = A0/(XI*(XI-V))
|
||
|
B0 = B0/(XI*(XI+V))
|
||
|
ALPHA(I) = (ALPHA(I-1)+2.0*XI*A0)/(XI*(XI+V))
|
||
|
BETA(I) = (XI-0.5*V)*ALPHA(I) - ZTOV*B0
|
||
|
30 CONTINUE
|
||
|
C
|
||
|
BKNU = ALPHA(NTERMS)
|
||
|
BKNUD = BETA(NTERMS)
|
||
|
DO 40 II=2,NTERMS
|
||
|
I = NTERMS + 1 - II
|
||
|
BKNU = ALPHA(I) + BKNU*Z
|
||
|
BKNUD = BETA(I) + BKNUD*Z
|
||
|
40 CONTINUE
|
||
|
C
|
||
|
EXPX = EXP(X)
|
||
|
BKNU = EXPX*BKNU/X2TOV
|
||
|
C
|
||
|
IF (-0.5*(XNU+1.)*ALNZ-2.0*ALN2.GT.ALNBIG) ISWTCH = 1
|
||
|
IF (ISWTCH.EQ.1) RETURN
|
||
|
BKNUD = EXPX*BKNUD*2.0/(X2TOV*X)
|
||
|
C
|
||
|
IF (XNU.LE.0.5) BKNU1 = V*BKNU/X - BKNUD
|
||
|
IF (XNU.LE.0.5) RETURN
|
||
|
C
|
||
|
BKNU0 = BKNU
|
||
|
BKNU = -V*BKNU/X - BKNUD
|
||
|
BKNU1 = 2.0*XNU*BKNU/X + BKNU0
|
||
|
RETURN
|
||
|
C
|
||
|
C X IS LARGE. FIND K-SUB-XNU (X) AND K-SUB-XNU+1 (X) WITH Y. L. LUKE-S
|
||
|
C RATIONAL EXPANSION.
|
||
|
C
|
||
|
50 SQRTX = SQRT(X)
|
||
|
IF (X.GT.1.0/XSML) GO TO 90
|
||
|
AN = -1.56 + 4.0/X
|
||
|
BN = -0.29 - 0.22/X
|
||
|
NTERMS = MIN (15, MAX1 (3.0, AN+BN*ALNEPS))
|
||
|
C
|
||
|
DO 80 INU=1,2
|
||
|
XMU = 0.
|
||
|
IF (INU.EQ.1 .AND. XNU.GT.XNUSML) XMU = (4.0*XNU)*XNU
|
||
|
IF (INU.EQ.2) XMU = 4.0*(ABS(XNU)+1.)**2
|
||
|
C
|
||
|
A(1) = 1.0 - XMU
|
||
|
A(2) = 9.0 - XMU
|
||
|
A(3) = 25.0 - XMU
|
||
|
IF (A(2).EQ.0.) RESULT = SQPI2*(16.*X+XMU+7.)/(16.*X*SQRTX)
|
||
|
IF (A(2).EQ.0.) GO TO 70
|
||
|
C
|
||
|
ALPHA(1) = 1.0
|
||
|
ALPHA(2) = (16.*X+A(2))/A(2)
|
||
|
ALPHA(3) = ((768.*X+48.*A(3))*X + A(2)*A(3))/(A(2)*A(3))
|
||
|
C
|
||
|
BETA(1) = 1.0
|
||
|
BETA(2) = (16.*X+(XMU+7.))/A(2)
|
||
|
BETA(3) = ((768.*X+48.*(XMU+23.))*X + ((XMU+62.)*XMU+129.))
|
||
|
1 / (A(2)*A(3))
|
||
|
C
|
||
|
IF (NTERMS.LT.4) GO TO 65
|
||
|
DO 60 I=4,NTERMS
|
||
|
N = I - 1
|
||
|
X2N = 2*N - 1
|
||
|
C
|
||
|
A(I) = (X2N+2.)**2 - XMU
|
||
|
QQ = 16.*X2N/A(I)
|
||
|
P1 = -X2N*(12*N*N-20*N-A(1))/((X2N-2.)*A(I)) - QQ*X
|
||
|
P2 = (12*N*N-28*N+8-A(1))/A(I) - QQ*X
|
||
|
P3 = -X2N*A(I-3)/((X2N-2.)*A(I))
|
||
|
C
|
||
|
ALPHA(I) = -P1*ALPHA(I-1) - P2*ALPHA(I-2) - P3*ALPHA(I-3)
|
||
|
BETA(I) = -P1*BETA(I-1) - P2*BETA(I-2) - P3*BETA(I-3)
|
||
|
60 CONTINUE
|
||
|
C
|
||
|
65 RESULT = SQPI2*BETA(NTERMS)/(SQRTX*ALPHA(NTERMS))
|
||
|
C
|
||
|
70 IF (INU.EQ.1) BKNU = RESULT
|
||
|
IF (INU.EQ.2) BKNU1 = RESULT
|
||
|
80 CONTINUE
|
||
|
RETURN
|
||
|
C
|
||
|
90 BKNU = SQPI2/SQRTX
|
||
|
BKNU1 = BKNU
|
||
|
RETURN
|
||
|
C
|
||
|
END
|