OpenLibm/slatec/radfg.f

195 lines
5.6 KiB
FortranFixed
Raw Normal View History

*DECK RADFG
SUBROUTINE RADFG (IDO, IP, L1, IDL1, CC, C1, C2, CH, CH2, WA)
C***BEGIN PROLOGUE RADFG
C***SUBSIDIARY
C***PURPOSE Calculate the fast Fourier transform of subvectors of
C arbitrary length.
C***LIBRARY SLATEC (FFTPACK)
C***TYPE SINGLE PRECISION (RADFG-S)
C***AUTHOR Swarztrauber, P. N., (NCAR)
C***ROUTINES CALLED (NONE)
C***REVISION HISTORY (YYMMDD)
C 790601 DATE WRITTEN
C 830401 Modified to use SLATEC library source file format.
C 860115 Modified by Ron Boisvert to adhere to Fortran 77 by
C (a) changing dummy array size declarations (1) to (*),
C (b) changing references to intrinsic function FLOAT
C to REAL, and
C (c) changing definition of variable TPI by using
C FORTRAN intrinsic function ATAN instead of a DATA
C statement.
C 881128 Modified by Dick Valent to meet prologue standards.
C 890531 Changed all specific intrinsics to generic. (WRB)
C 890831 Modified array declarations. (WRB)
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900402 Added TYPE section. (WRB)
C***END PROLOGUE RADFG
DIMENSION CH(IDO,L1,*), CC(IDO,IP,*), C1(IDO,L1,*),
+ C2(IDL1,*), CH2(IDL1,*), WA(*)
C***FIRST EXECUTABLE STATEMENT RADFG
TPI = 8.*ATAN(1.)
ARG = TPI/IP
DCP = COS(ARG)
DSP = SIN(ARG)
IPPH = (IP+1)/2
IPP2 = IP+2
IDP2 = IDO+2
NBD = (IDO-1)/2
IF (IDO .EQ. 1) GO TO 119
DO 101 IK=1,IDL1
CH2(IK,1) = C2(IK,1)
101 CONTINUE
DO 103 J=2,IP
DO 102 K=1,L1
CH(1,K,J) = C1(1,K,J)
102 CONTINUE
103 CONTINUE
IF (NBD .GT. L1) GO TO 107
IS = -IDO
DO 106 J=2,IP
IS = IS+IDO
IDIJ = IS
DO 105 I=3,IDO,2
IDIJ = IDIJ+2
DO 104 K=1,L1
CH(I-1,K,J) = WA(IDIJ-1)*C1(I-1,K,J)+WA(IDIJ)*C1(I,K,J)
CH(I,K,J) = WA(IDIJ-1)*C1(I,K,J)-WA(IDIJ)*C1(I-1,K,J)
104 CONTINUE
105 CONTINUE
106 CONTINUE
GO TO 111
107 IS = -IDO
DO 110 J=2,IP
IS = IS+IDO
DO 109 K=1,L1
IDIJ = IS
CDIR$ IVDEP
DO 108 I=3,IDO,2
IDIJ = IDIJ+2
CH(I-1,K,J) = WA(IDIJ-1)*C1(I-1,K,J)+WA(IDIJ)*C1(I,K,J)
CH(I,K,J) = WA(IDIJ-1)*C1(I,K,J)-WA(IDIJ)*C1(I-1,K,J)
108 CONTINUE
109 CONTINUE
110 CONTINUE
111 IF (NBD .LT. L1) GO TO 115
DO 114 J=2,IPPH
JC = IPP2-J
DO 113 K=1,L1
CDIR$ IVDEP
DO 112 I=3,IDO,2
C1(I-1,K,J) = CH(I-1,K,J)+CH(I-1,K,JC)
C1(I-1,K,JC) = CH(I,K,J)-CH(I,K,JC)
C1(I,K,J) = CH(I,K,J)+CH(I,K,JC)
C1(I,K,JC) = CH(I-1,K,JC)-CH(I-1,K,J)
112 CONTINUE
113 CONTINUE
114 CONTINUE
GO TO 121
115 DO 118 J=2,IPPH
JC = IPP2-J
DO 117 I=3,IDO,2
DO 116 K=1,L1
C1(I-1,K,J) = CH(I-1,K,J)+CH(I-1,K,JC)
C1(I-1,K,JC) = CH(I,K,J)-CH(I,K,JC)
C1(I,K,J) = CH(I,K,J)+CH(I,K,JC)
C1(I,K,JC) = CH(I-1,K,JC)-CH(I-1,K,J)
116 CONTINUE
117 CONTINUE
118 CONTINUE
GO TO 121
119 DO 120 IK=1,IDL1
C2(IK,1) = CH2(IK,1)
120 CONTINUE
121 DO 123 J=2,IPPH
JC = IPP2-J
DO 122 K=1,L1
C1(1,K,J) = CH(1,K,J)+CH(1,K,JC)
C1(1,K,JC) = CH(1,K,JC)-CH(1,K,J)
122 CONTINUE
123 CONTINUE
C
AR1 = 1.
AI1 = 0.
DO 127 L=2,IPPH
LC = IPP2-L
AR1H = DCP*AR1-DSP*AI1
AI1 = DCP*AI1+DSP*AR1
AR1 = AR1H
DO 124 IK=1,IDL1
CH2(IK,L) = C2(IK,1)+AR1*C2(IK,2)
CH2(IK,LC) = AI1*C2(IK,IP)
124 CONTINUE
DC2 = AR1
DS2 = AI1
AR2 = AR1
AI2 = AI1
DO 126 J=3,IPPH
JC = IPP2-J
AR2H = DC2*AR2-DS2*AI2
AI2 = DC2*AI2+DS2*AR2
AR2 = AR2H
DO 125 IK=1,IDL1
CH2(IK,L) = CH2(IK,L)+AR2*C2(IK,J)
CH2(IK,LC) = CH2(IK,LC)+AI2*C2(IK,JC)
125 CONTINUE
126 CONTINUE
127 CONTINUE
DO 129 J=2,IPPH
DO 128 IK=1,IDL1
CH2(IK,1) = CH2(IK,1)+C2(IK,J)
128 CONTINUE
129 CONTINUE
C
IF (IDO .LT. L1) GO TO 132
DO 131 K=1,L1
DO 130 I=1,IDO
CC(I,1,K) = CH(I,K,1)
130 CONTINUE
131 CONTINUE
GO TO 135
132 DO 134 I=1,IDO
DO 133 K=1,L1
CC(I,1,K) = CH(I,K,1)
133 CONTINUE
134 CONTINUE
135 DO 137 J=2,IPPH
JC = IPP2-J
J2 = J+J
DO 136 K=1,L1
CC(IDO,J2-2,K) = CH(1,K,J)
CC(1,J2-1,K) = CH(1,K,JC)
136 CONTINUE
137 CONTINUE
IF (IDO .EQ. 1) RETURN
IF (NBD .LT. L1) GO TO 141
DO 140 J=2,IPPH
JC = IPP2-J
J2 = J+J
DO 139 K=1,L1
CDIR$ IVDEP
DO 138 I=3,IDO,2
IC = IDP2-I
CC(I-1,J2-1,K) = CH(I-1,K,J)+CH(I-1,K,JC)
CC(IC-1,J2-2,K) = CH(I-1,K,J)-CH(I-1,K,JC)
CC(I,J2-1,K) = CH(I,K,J)+CH(I,K,JC)
CC(IC,J2-2,K) = CH(I,K,JC)-CH(I,K,J)
138 CONTINUE
139 CONTINUE
140 CONTINUE
RETURN
141 DO 144 J=2,IPPH
JC = IPP2-J
J2 = J+J
DO 143 I=3,IDO,2
IC = IDP2-I
DO 142 K=1,L1
CC(I-1,J2-1,K) = CH(I-1,K,J)+CH(I-1,K,JC)
CC(IC-1,J2-2,K) = CH(I-1,K,J)-CH(I-1,K,JC)
CC(I,J2-1,K) = CH(I,K,J)+CH(I,K,JC)
CC(IC,J2-2,K) = CH(I,K,JC)-CH(I,K,J)
142 CONTINUE
143 CONTINUE
144 CONTINUE
RETURN
END