mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-04 07:53:38 +01:00
336 lines
10 KiB
FortranFixed
336 lines
10 KiB
FortranFixed
|
*DECK RF
|
||
|
REAL FUNCTION RF (X, Y, Z, IER)
|
||
|
C***BEGIN PROLOGUE RF
|
||
|
C***PURPOSE Compute the incomplete or complete elliptic integral of the
|
||
|
C 1st kind. For X, Y, and Z non-negative and at most one of
|
||
|
C them zero, RF(X,Y,Z) = Integral from zero to infinity of
|
||
|
C -1/2 -1/2 -1/2
|
||
|
C (1/2)(t+X) (t+Y) (t+Z) dt.
|
||
|
C If X, Y or Z is zero, the integral is complete.
|
||
|
C***LIBRARY SLATEC
|
||
|
C***CATEGORY C14
|
||
|
C***TYPE SINGLE PRECISION (RF-S, DRF-D)
|
||
|
C***KEYWORDS COMPLETE ELLIPTIC INTEGRAL, DUPLICATION THEOREM,
|
||
|
C INCOMPLETE ELLIPTIC INTEGRAL, INTEGRAL OF THE FIRST KIND,
|
||
|
C TAYLOR SERIES
|
||
|
C***AUTHOR Carlson, B. C.
|
||
|
C Ames Laboratory-DOE
|
||
|
C Iowa State University
|
||
|
C Ames, IA 50011
|
||
|
C Notis, E. M.
|
||
|
C Ames Laboratory-DOE
|
||
|
C Iowa State University
|
||
|
C Ames, IA 50011
|
||
|
C Pexton, R. L.
|
||
|
C Lawrence Livermore National Laboratory
|
||
|
C Livermore, CA 94550
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C 1. RF
|
||
|
C Evaluate an INCOMPLETE (or COMPLETE) ELLIPTIC INTEGRAL
|
||
|
C of the first kind
|
||
|
C Standard FORTRAN function routine
|
||
|
C Single precision version
|
||
|
C The routine calculates an approximation result to
|
||
|
C RF(X,Y,Z) = Integral from zero to infinity of
|
||
|
C
|
||
|
C -1/2 -1/2 -1/2
|
||
|
C (1/2)(t+X) (t+Y) (t+Z) dt,
|
||
|
C
|
||
|
C where X, Y, and Z are nonnegative and at most one of them
|
||
|
C is zero. If one of them is zero, the integral is COMPLETE.
|
||
|
C The duplication theorem is iterated until the variables are
|
||
|
C nearly equal, and the function is then expanded in Taylor
|
||
|
C series to fifth order.
|
||
|
C
|
||
|
C 2. Calling Sequence
|
||
|
C RF( X, Y, Z, IER )
|
||
|
C
|
||
|
C Parameters on Entry
|
||
|
C Values assigned by the calling routine
|
||
|
C
|
||
|
C X - Single precision, nonnegative variable
|
||
|
C
|
||
|
C Y - Single precision, nonnegative variable
|
||
|
C
|
||
|
C Z - Single precision, nonnegative variable
|
||
|
C
|
||
|
C
|
||
|
C
|
||
|
C On Return (values assigned by the RF routine)
|
||
|
C
|
||
|
C RF - Single precision approximation to the integral
|
||
|
C
|
||
|
C IER - Integer
|
||
|
C
|
||
|
C IER = 0 Normal and reliable termination of the
|
||
|
C routine. It is assumed that the requested
|
||
|
C accuracy has been achieved.
|
||
|
C
|
||
|
C IER > 0 Abnormal termination of the routine
|
||
|
C
|
||
|
C X, Y, Z are unaltered.
|
||
|
C
|
||
|
C
|
||
|
C 3. Error Messages
|
||
|
C
|
||
|
C Value of IER assigned by the RF routine
|
||
|
C
|
||
|
C Value assigned Error Message Printed
|
||
|
C IER = 1 MIN(X,Y,Z) .LT. 0.0E0
|
||
|
C = 2 MIN(X+Y,X+Z,Y+Z) .LT. LOLIM
|
||
|
C = 3 MAX(X,Y,Z) .GT. UPLIM
|
||
|
C
|
||
|
C
|
||
|
C
|
||
|
C 4. Control Parameters
|
||
|
C
|
||
|
C Values of LOLIM, UPLIM, and ERRTOL are set by the
|
||
|
C routine.
|
||
|
C
|
||
|
C LOLIM and UPLIM determine the valid range of X, Y and Z
|
||
|
C
|
||
|
C LOLIM - Lower limit of valid arguments
|
||
|
C
|
||
|
C Not less than 5 * (machine minimum).
|
||
|
C
|
||
|
C UPLIM - Upper limit of valid arguments
|
||
|
C
|
||
|
C Not greater than (machine maximum) / 5.
|
||
|
C
|
||
|
C
|
||
|
C Acceptable Values For: LOLIM UPLIM
|
||
|
C IBM 360/370 SERIES : 3.0E-78 1.0E+75
|
||
|
C CDC 6000/7000 SERIES : 1.0E-292 1.0E+321
|
||
|
C UNIVAC 1100 SERIES : 1.0E-37 1.0E+37
|
||
|
C CRAY : 2.3E-2466 1.09E+2465
|
||
|
C VAX 11 SERIES : 1.5E-38 3.0E+37
|
||
|
C
|
||
|
C
|
||
|
C
|
||
|
C ERRTOL determines the accuracy of the answer
|
||
|
C
|
||
|
C The value assigned by the routine will result
|
||
|
C in solution precision within 1-2 decimals of
|
||
|
C "machine precision".
|
||
|
C
|
||
|
C
|
||
|
C
|
||
|
C ERRTOL - Relative error due to truncation is less than
|
||
|
C ERRTOL ** 6 / (4 * (1-ERRTOL) .
|
||
|
C
|
||
|
C
|
||
|
C
|
||
|
C The accuracy of the computed approximation to the inte-
|
||
|
C gral can be controlled by choosing the value of ERRTOL.
|
||
|
C Truncation of a Taylor series after terms of fifth order
|
||
|
C introduces an error less than the amount shown in the
|
||
|
C second column of the following table for each value of
|
||
|
C ERRTOL in the first column. In addition to the trunca-
|
||
|
C tion error there will be round-off error, but in prac-
|
||
|
C tice the total error from both sources is usually less
|
||
|
C than the amount given in the table.
|
||
|
C
|
||
|
C
|
||
|
C
|
||
|
C
|
||
|
C
|
||
|
C Sample Choices: ERRTOL Relative Truncation
|
||
|
C error less than
|
||
|
C 1.0E-3 3.0E-19
|
||
|
C 3.0E-3 2.0E-16
|
||
|
C 1.0E-2 3.0E-13
|
||
|
C 3.0E-2 2.0E-10
|
||
|
C 1.0E-1 3.0E-7
|
||
|
C
|
||
|
C
|
||
|
C Decreasing ERRTOL by a factor of 10 yields six more
|
||
|
C decimal digits of accuracy at the expense of one or
|
||
|
C two more iterations of the duplication theorem.
|
||
|
C
|
||
|
C *Long Description:
|
||
|
C
|
||
|
C RF Special Comments
|
||
|
C
|
||
|
C
|
||
|
C
|
||
|
C Check by addition theorem: RF(X,X+Z,X+W) + RF(Y,Y+Z,Y+W)
|
||
|
C = RF(0,Z,W), where X,Y,Z,W are positive and X * Y = Z * W.
|
||
|
C
|
||
|
C
|
||
|
C On Input:
|
||
|
C
|
||
|
C X, Y, and Z are the variables in the integral RF(X,Y,Z).
|
||
|
C
|
||
|
C
|
||
|
C On Output:
|
||
|
C
|
||
|
C
|
||
|
C X, Y, and Z are unaltered.
|
||
|
C
|
||
|
C
|
||
|
C
|
||
|
C ********************************************************
|
||
|
C
|
||
|
C Warning: Changes in the program may improve speed at the
|
||
|
C expense of robustness.
|
||
|
C
|
||
|
C
|
||
|
C
|
||
|
C Special Functions via RF
|
||
|
C
|
||
|
C
|
||
|
C Legendre form of ELLIPTIC INTEGRAL of 1st kind
|
||
|
C ----------------------------------------------
|
||
|
C
|
||
|
C
|
||
|
C 2 2 2
|
||
|
C F(PHI,K) = SIN(PHI) RF(COS (PHI),1-K SIN (PHI),1)
|
||
|
C
|
||
|
C
|
||
|
C 2
|
||
|
C K(K) = RF(0,1-K ,1)
|
||
|
C
|
||
|
C PI/2 2 2 -1/2
|
||
|
C = INT (1-K SIN (PHI) ) D PHI
|
||
|
C 0
|
||
|
C
|
||
|
C
|
||
|
C
|
||
|
C
|
||
|
C
|
||
|
C Bulirsch form of ELLIPTIC INTEGRAL of 1st kind
|
||
|
C ----------------------------------------------
|
||
|
C
|
||
|
C
|
||
|
C 2 2 2
|
||
|
C EL1(X,KC) = X RF(1,1+KC X ,1+X )
|
||
|
C
|
||
|
C
|
||
|
C
|
||
|
C
|
||
|
C Lemniscate constant A
|
||
|
C ---------------------
|
||
|
C
|
||
|
C
|
||
|
C 1 4 -1/2
|
||
|
C A = INT (1-S ) DS = RF(0,1,2) = RF(0,2,1)
|
||
|
C 0
|
||
|
C
|
||
|
C
|
||
|
C -------------------------------------------------------------------
|
||
|
C
|
||
|
C***REFERENCES B. C. Carlson and E. M. Notis, Algorithms for incomplete
|
||
|
C elliptic integrals, ACM Transactions on Mathematical
|
||
|
C Software 7, 3 (September 1981), pp. 398-403.
|
||
|
C B. C. Carlson, Computing elliptic integrals by
|
||
|
C duplication, Numerische Mathematik 33, (1979),
|
||
|
C pp. 1-16.
|
||
|
C B. C. Carlson, Elliptic integrals of the first kind,
|
||
|
C SIAM Journal of Mathematical Analysis 8, (1977),
|
||
|
C pp. 231-242.
|
||
|
C***ROUTINES CALLED R1MACH, XERMSG
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 790801 DATE WRITTEN
|
||
|
C 890531 Changed all specific intrinsics to generic. (WRB)
|
||
|
C 891009 Removed unreferenced statement labels. (WRB)
|
||
|
C 891009 REVISION DATE from Version 3.2
|
||
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
|
||
|
C 900326 Removed duplicate information from DESCRIPTION section.
|
||
|
C (WRB)
|
||
|
C 900510 Changed calls to XERMSG to standard form, and some
|
||
|
C editorial changes. (RWC))
|
||
|
C 920501 Reformatted the REFERENCES section. (WRB)
|
||
|
C***END PROLOGUE RF
|
||
|
CHARACTER*16 XERN3, XERN4, XERN5, XERN6
|
||
|
INTEGER IER
|
||
|
REAL LOLIM, UPLIM, EPSLON, ERRTOL
|
||
|
REAL C1, C2, C3, E2, E3, LAMDA
|
||
|
REAL MU, S, X, XN, XNDEV
|
||
|
REAL XNROOT, Y, YN, YNDEV, YNROOT, Z, ZN, ZNDEV,
|
||
|
* ZNROOT
|
||
|
LOGICAL FIRST
|
||
|
SAVE ERRTOL,LOLIM,UPLIM,C1,C2,C3,FIRST
|
||
|
DATA FIRST /.TRUE./
|
||
|
C
|
||
|
C***FIRST EXECUTABLE STATEMENT RF
|
||
|
C
|
||
|
IF (FIRST) THEN
|
||
|
ERRTOL = (4.0E0*R1MACH(3))**(1.0E0/6.0E0)
|
||
|
LOLIM = 5.0E0 * R1MACH(1)
|
||
|
UPLIM = R1MACH(2)/5.0E0
|
||
|
C
|
||
|
C1 = 1.0E0/24.0E0
|
||
|
C2 = 3.0E0/44.0E0
|
||
|
C3 = 1.0E0/14.0E0
|
||
|
ENDIF
|
||
|
FIRST = .FALSE.
|
||
|
C
|
||
|
C CALL ERROR HANDLER IF NECESSARY.
|
||
|
C
|
||
|
RF = 0.0E0
|
||
|
IF (MIN(X,Y,Z).LT.0.0E0) THEN
|
||
|
IER = 1
|
||
|
WRITE (XERN3, '(1PE15.6)') X
|
||
|
WRITE (XERN4, '(1PE15.6)') Y
|
||
|
WRITE (XERN5, '(1PE15.6)') Z
|
||
|
CALL XERMSG ('SLATEC', 'RF',
|
||
|
* 'MIN(X,Y,Z).LT.0 WHERE X = ' // XERN3 // ' Y = ' // XERN4 //
|
||
|
* ' AND Z = ' // XERN5, 1, 1)
|
||
|
RETURN
|
||
|
ENDIF
|
||
|
C
|
||
|
IF (MAX(X,Y,Z).GT.UPLIM) THEN
|
||
|
IER = 3
|
||
|
WRITE (XERN3, '(1PE15.6)') X
|
||
|
WRITE (XERN4, '(1PE15.6)') Y
|
||
|
WRITE (XERN5, '(1PE15.6)') Z
|
||
|
WRITE (XERN6, '(1PE15.6)') UPLIM
|
||
|
CALL XERMSG ('SLATEC', 'RF',
|
||
|
* 'MAX(X,Y,Z).GT.UPLIM WHERE X = ' // XERN3 // ' Y = ' //
|
||
|
* XERN4 // ' Z = ' // XERN5 // ' AND UPLIM = ' // XERN6, 3, 1)
|
||
|
RETURN
|
||
|
ENDIF
|
||
|
C
|
||
|
IF (MIN(X+Y,X+Z,Y+Z).LT.LOLIM) THEN
|
||
|
IER = 2
|
||
|
WRITE (XERN3, '(1PE15.6)') X
|
||
|
WRITE (XERN4, '(1PE15.6)') Y
|
||
|
WRITE (XERN5, '(1PE15.6)') Z
|
||
|
WRITE (XERN6, '(1PE15.6)') LOLIM
|
||
|
CALL XERMSG ('SLATEC', 'RF',
|
||
|
* 'MIN(X+Y,X+Z,Y+Z).LT.LOLIM WHERE X = ' // XERN3 //
|
||
|
* ' Y = ' // XERN4 // ' Z = ' // XERN5 // ' AND LOLIM = ' //
|
||
|
* XERN6, 2, 1)
|
||
|
RETURN
|
||
|
ENDIF
|
||
|
C
|
||
|
IER = 0
|
||
|
XN = X
|
||
|
YN = Y
|
||
|
ZN = Z
|
||
|
C
|
||
|
30 MU = (XN+YN+ZN)/3.0E0
|
||
|
XNDEV = 2.0E0 - (MU+XN)/MU
|
||
|
YNDEV = 2.0E0 - (MU+YN)/MU
|
||
|
ZNDEV = 2.0E0 - (MU+ZN)/MU
|
||
|
EPSLON = MAX(ABS(XNDEV), ABS(YNDEV), ABS(ZNDEV))
|
||
|
IF (EPSLON.LT.ERRTOL) GO TO 40
|
||
|
XNROOT = SQRT(XN)
|
||
|
YNROOT = SQRT(YN)
|
||
|
ZNROOT = SQRT(ZN)
|
||
|
LAMDA = XNROOT*(YNROOT+ZNROOT) + YNROOT*ZNROOT
|
||
|
XN = (XN+LAMDA)*0.250E0
|
||
|
YN = (YN+LAMDA)*0.250E0
|
||
|
ZN = (ZN+LAMDA)*0.250E0
|
||
|
GO TO 30
|
||
|
C
|
||
|
40 E2 = XNDEV*YNDEV - ZNDEV*ZNDEV
|
||
|
E3 = XNDEV*YNDEV*ZNDEV
|
||
|
S = 1.0E0 + (C1*E2-0.10E0-C2*E3)*E2 + C3*E3
|
||
|
RF = S/SQRT(MU)
|
||
|
C
|
||
|
RETURN
|
||
|
END
|