OpenLibm/slatec/shels.f

99 lines
3.1 KiB
FortranFixed
Raw Normal View History

*DECK SHELS
SUBROUTINE SHELS (A, LDA, N, Q, B)
C***BEGIN PROLOGUE SHELS
C***SUBSIDIARY
C***PURPOSE Internal routine for SGMRES.
C***LIBRARY SLATEC (SLAP)
C***CATEGORY D2A4, D2B4
C***TYPE SINGLE PRECISION (SHELS-S, DHELS-D)
C***KEYWORDS GENERALIZED MINIMUM RESIDUAL, ITERATIVE PRECONDITION,
C NON-SYMMETRIC LINEAR SYSTEM, SLAP, SPARSE
C***AUTHOR Brown, Peter, (LLNL), pnbrown@llnl.gov
C Hindmarsh, Alan, (LLNL), alanh@llnl.gov
C Seager, Mark K., (LLNL), seager@llnl.gov
C Lawrence Livermore National Laboratory
C PO Box 808, L-60
C Livermore, CA 94550 (510) 423-3141
C***DESCRIPTION
C This routine is extracted from the LINPACK routine SGESL with
C changes due to the fact that A is an upper Hessenberg matrix.
C
C SHELS solves the least squares problem:
C
C MIN(B-A*X,B-A*X)
C
C using the factors computed by SHEQR.
C
C *Usage:
C INTEGER LDA, N
C REAL A(LDA,N), Q(2*N), B(N+1)
C
C CALL SHELS(A, LDA, N, Q, B)
C
C *Arguments:
C A :IN Real A(LDA,N)
C The output from SHEQR which contains the upper
C triangular factor R in the QR decomposition of A.
C LDA :IN Integer
C The leading dimension of the array A.
C N :IN Integer
C A is originally an (N+1) by N matrix.
C Q :IN Real Q(2*N)
C The coefficients of the N Givens rotations
C used in the QR factorization of A.
C B :INOUT Real B(N+1)
C On input, B is the right hand side vector.
C On output, B is the solution vector X.
C
C***SEE ALSO SGMRES
C***ROUTINES CALLED SAXPY
C***REVISION HISTORY (YYMMDD)
C 871001 DATE WRITTEN
C 881213 Previous REVISION DATE
C 890915 Made changes requested at July 1989 CML Meeting. (MKS)
C 890922 Numerous changes to prologue to make closer to SLATEC
C standard. (FNF)
C 890929 Numerous changes to reduce SP/DP differences. (FNF)
C 910411 Prologue converted to Version 4.0 format. (BAB)
C 910502 Added C***FIRST EXECUTABLE STATEMENT line. (FNF)
C 910506 Made subsidiary to SGMRES. (FNF)
C 920511 Added complete declaration section. (WRB)
C***END PROLOGUE SHELS
C The following is for optimized compilation on LLNL/LTSS Crays.
CLLL. OPTIMIZE
C .. Scalar Arguments ..
INTEGER LDA, N
C .. Array Arguments ..
REAL A(LDA,*), B(*), Q(*)
C .. Local Scalars ..
REAL C, S, T, T1, T2
INTEGER IQ, K, KB, KP1
C .. External Subroutines ..
EXTERNAL SAXPY
C***FIRST EXECUTABLE STATEMENT SHELS
C
C Minimize(B-A*X,B-A*X). First form Q*B.
C
DO 20 K = 1, N
KP1 = K + 1
IQ = 2*(K-1) + 1
C = Q(IQ)
S = Q(IQ+1)
T1 = B(K)
T2 = B(KP1)
B(K) = C*T1 - S*T2
B(KP1) = S*T1 + C*T2
20 CONTINUE
C
C Now solve R*X = Q*B.
C
DO 40 KB = 1, N
K = N + 1 - KB
B(K) = B(K)/A(K,K)
T = -B(K)
CALL SAXPY(K-1, T, A(1,K), 1, B(1), 1)
40 CONTINUE
RETURN
C------------- LAST LINE OF SHELS FOLLOWS ----------------------------
END