mirror of
https://git.planet-casio.com/Lephenixnoir/OpenLibm.git
synced 2025-01-03 23:43:41 +01:00
274 lines
8.5 KiB
FortranFixed
274 lines
8.5 KiB
FortranFixed
|
*DECK SNBCO
|
||
|
SUBROUTINE SNBCO (ABE, LDA, N, ML, MU, IPVT, RCOND, Z)
|
||
|
C***BEGIN PROLOGUE SNBCO
|
||
|
C***PURPOSE Factor a band matrix using Gaussian elimination and
|
||
|
C estimate the condition number.
|
||
|
C***LIBRARY SLATEC
|
||
|
C***CATEGORY D2A2
|
||
|
C***TYPE SINGLE PRECISION (SNBCO-S, DNBCO-D, CNBCO-C)
|
||
|
C***KEYWORDS BANDED, LINEAR EQUATIONS, MATRIX FACTORIZATION,
|
||
|
C NONSYMMETRIC
|
||
|
C***AUTHOR Voorhees, E. A., (LANL)
|
||
|
C***DESCRIPTION
|
||
|
C
|
||
|
C SNBCO factors a real band matrix by Gaussian
|
||
|
C elimination and estimates the condition of the matrix.
|
||
|
C
|
||
|
C If RCOND is not needed, SNBFA is slightly faster.
|
||
|
C To solve A*X = B , follow SNBCO by SNBSL.
|
||
|
C To compute INVERSE(A)*C , follow SNBCO by SNBSL.
|
||
|
C To compute DETERMINANT(A) , follow SNBCO by SNBDI.
|
||
|
C
|
||
|
C On Entry
|
||
|
C
|
||
|
C ABE REAL(LDA, NC)
|
||
|
C contains the matrix in band storage. The rows
|
||
|
C of the original matrix are stored in the rows
|
||
|
C of ABE and the diagonals of the original matrix
|
||
|
C are stored in columns 1 through ML+MU+1 of ABE.
|
||
|
C NC must be .GE. 2*ML+MU+1 .
|
||
|
C See the comments below for details.
|
||
|
C
|
||
|
C LDA INTEGER
|
||
|
C the leading dimension of the array ABE.
|
||
|
C LDA must be .GE. N .
|
||
|
C
|
||
|
C N INTEGER
|
||
|
C the order of the original matrix.
|
||
|
C
|
||
|
C ML INTEGER
|
||
|
C number of diagonals below the main diagonal.
|
||
|
C 0 .LE. ML .LT. N .
|
||
|
C
|
||
|
C MU INTEGER
|
||
|
C number of diagonals above the main diagonal.
|
||
|
C 0 .LE. MU .LT. N .
|
||
|
C More efficient if ML .LE. MU .
|
||
|
C
|
||
|
C On Return
|
||
|
C
|
||
|
C ABE an upper triangular matrix in band storage
|
||
|
C and the multipliers which were used to obtain it.
|
||
|
C The factorization can be written A = L*U , where
|
||
|
C L is a product of permutation and unit lower
|
||
|
C triangular matrices and U is upper triangular.
|
||
|
C
|
||
|
C IPVT INTEGER(N)
|
||
|
C an integer vector of pivot indices.
|
||
|
C
|
||
|
C RCOND REAL
|
||
|
C an estimate of the reciprocal condition of A .
|
||
|
C For the system A*X = B , relative perturbations
|
||
|
C in A and B of size EPSILON may cause
|
||
|
C relative perturbations in X of size EPSILON/RCOND .
|
||
|
C If RCOND is so small that the logical expression
|
||
|
C 1.0 + RCOND .EQ. 1.0
|
||
|
C is true, then A may be singular to working
|
||
|
C precision. In particular, RCOND is zero if
|
||
|
C exact singularity is detected or the estimate
|
||
|
C underflows.
|
||
|
C
|
||
|
C Z REAL(N)
|
||
|
C a work vector whose contents are usually unimportant.
|
||
|
C If A is close to a singular matrix, then Z is
|
||
|
C an approximate null vector in the sense that
|
||
|
C NORM(A*Z) = RCOND*NORM(A)*NORM(Z) .
|
||
|
C
|
||
|
C Band Storage
|
||
|
C
|
||
|
C If A is a band matrix, the following program segment
|
||
|
C will set up the input.
|
||
|
C
|
||
|
C ML = (band width below the diagonal)
|
||
|
C MU = (band width above the diagonal)
|
||
|
C DO 20 I = 1, N
|
||
|
C J1 = MAX(1, I-ML)
|
||
|
C J2 = MIN(N, I+MU)
|
||
|
C DO 10 J = J1, J2
|
||
|
C K = J - I + ML + 1
|
||
|
C ABE(I,K) = A(I,J)
|
||
|
C 10 CONTINUE
|
||
|
C 20 CONTINUE
|
||
|
C
|
||
|
C This uses columns 1 through ML+MU+1 of ABE .
|
||
|
C Furthermore, ML additional columns are needed in
|
||
|
C ABE starting with column ML+MU+2 for elements
|
||
|
C generated during the triangularization. The total
|
||
|
C number of columns needed in ABE is 2*ML+MU+1 .
|
||
|
C
|
||
|
C Example: If the original matrix is
|
||
|
C
|
||
|
C 11 12 13 0 0 0
|
||
|
C 21 22 23 24 0 0
|
||
|
C 0 32 33 34 35 0
|
||
|
C 0 0 43 44 45 46
|
||
|
C 0 0 0 54 55 56
|
||
|
C 0 0 0 0 65 66
|
||
|
C
|
||
|
C then N = 6, ML = 1, MU = 2, LDA .GE. 5 and ABE should contain
|
||
|
C
|
||
|
C * 11 12 13 + , * = not used
|
||
|
C 21 22 23 24 + , + = used for pivoting
|
||
|
C 32 33 34 35 +
|
||
|
C 43 44 45 46 +
|
||
|
C 54 55 56 * +
|
||
|
C 65 66 * * +
|
||
|
C
|
||
|
C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
|
||
|
C Stewart, LINPACK Users' Guide, SIAM, 1979.
|
||
|
C***ROUTINES CALLED SASUM, SAXPY, SDOT, SNBFA, SSCAL
|
||
|
C***REVISION HISTORY (YYMMDD)
|
||
|
C 800723 DATE WRITTEN
|
||
|
C 890531 Changed all specific intrinsics to generic. (WRB)
|
||
|
C 890831 Modified array declarations. (WRB)
|
||
|
C 890831 REVISION DATE from Version 3.2
|
||
|
C 891214 Prologue converted to Version 4.0 format. (BAB)
|
||
|
C 920501 Reformatted the REFERENCES section. (WRB)
|
||
|
C***END PROLOGUE SNBCO
|
||
|
INTEGER LDA,N,ML,MU,IPVT(*)
|
||
|
REAL ABE(LDA,*),Z(*)
|
||
|
REAL RCOND
|
||
|
C
|
||
|
REAL SDOT,EK,T,WK,WKM
|
||
|
REAL ANORM,S,SASUM,SM,YNORM
|
||
|
INTEGER I,INFO,J,JU,K,KB,KP1,L,LDB,LM,LZ,M,ML1,MM,NL,NU
|
||
|
C***FIRST EXECUTABLE STATEMENT SNBCO
|
||
|
ML1=ML+1
|
||
|
LDB = LDA - 1
|
||
|
ANORM = 0.0E0
|
||
|
DO 10 J = 1, N
|
||
|
NU = MIN(MU,J-1)
|
||
|
NL = MIN(ML,N-J)
|
||
|
L = 1 + NU + NL
|
||
|
ANORM = MAX(ANORM,SASUM(L,ABE(J+NL,ML1-NL),LDB))
|
||
|
10 CONTINUE
|
||
|
C
|
||
|
C FACTOR
|
||
|
C
|
||
|
CALL SNBFA(ABE,LDA,N,ML,MU,IPVT,INFO)
|
||
|
C
|
||
|
C RCOND = 1/(NORM(A)*(ESTIMATE OF NORM(INVERSE(A)))) .
|
||
|
C ESTIMATE = NORM(Z)/NORM(Y) WHERE A*Z = Y AND TRANS(A)*Y = E .
|
||
|
C TRANS(A) IS THE TRANSPOSE OF A . THE COMPONENTS OF E ARE
|
||
|
C CHOSEN TO CAUSE MAXIMUM LOCAL GROWTH IN THE ELEMENTS OF W WHERE
|
||
|
C TRANS(U)*W = E . THE VECTORS ARE FREQUENTLY RESCALED TO AVOID
|
||
|
C OVERFLOW.
|
||
|
C
|
||
|
C SOLVE TRANS(U)*W = E
|
||
|
C
|
||
|
EK = 1.0E0
|
||
|
DO 20 J = 1, N
|
||
|
Z(J) = 0.0E0
|
||
|
20 CONTINUE
|
||
|
M = ML + MU + 1
|
||
|
JU = 0
|
||
|
DO 100 K = 1, N
|
||
|
IF (Z(K) .NE. 0.0E0) EK = SIGN(EK,-Z(K))
|
||
|
IF (ABS(EK-Z(K)) .LE. ABS(ABE(K,ML1))) GO TO 30
|
||
|
S = ABS(ABE(K,ML1))/ABS(EK-Z(K))
|
||
|
CALL SSCAL(N,S,Z,1)
|
||
|
EK = S*EK
|
||
|
30 CONTINUE
|
||
|
WK = EK - Z(K)
|
||
|
WKM = -EK - Z(K)
|
||
|
S = ABS(WK)
|
||
|
SM = ABS(WKM)
|
||
|
IF (ABE(K,ML1) .EQ. 0.0E0) GO TO 40
|
||
|
WK = WK/ABE(K,ML1)
|
||
|
WKM = WKM/ABE(K,ML1)
|
||
|
GO TO 50
|
||
|
40 CONTINUE
|
||
|
WK = 1.0E0
|
||
|
WKM = 1.0E0
|
||
|
50 CONTINUE
|
||
|
KP1 = K + 1
|
||
|
JU = MIN(MAX(JU,MU+IPVT(K)),N)
|
||
|
MM = ML1
|
||
|
IF (KP1 .GT. JU) GO TO 90
|
||
|
DO 60 I = KP1, JU
|
||
|
MM = MM + 1
|
||
|
SM = SM + ABS(Z(I)+WKM*ABE(K,MM))
|
||
|
Z(I) = Z(I) + WK*ABE(K,MM)
|
||
|
S = S + ABS(Z(I))
|
||
|
60 CONTINUE
|
||
|
IF (S .GE. SM) GO TO 80
|
||
|
T = WKM -WK
|
||
|
WK = WKM
|
||
|
MM = ML1
|
||
|
DO 70 I = KP1, JU
|
||
|
MM = MM + 1
|
||
|
Z(I) = Z(I) + T*ABE(K,MM)
|
||
|
70 CONTINUE
|
||
|
80 CONTINUE
|
||
|
90 CONTINUE
|
||
|
Z(K) = WK
|
||
|
100 CONTINUE
|
||
|
S = 1.0E0/SASUM(N,Z,1)
|
||
|
CALL SSCAL(N,S,Z,1)
|
||
|
C
|
||
|
C SOLVE TRANS(L)*Y = W
|
||
|
C
|
||
|
DO 120 KB = 1, N
|
||
|
K = N + 1 - KB
|
||
|
NL = MIN(ML,N-K)
|
||
|
IF (K .LT. N) Z(K) = Z(K) + SDOT(NL,ABE(K+NL,ML1-NL),-LDB,Z(K+1)
|
||
|
1 ,1)
|
||
|
IF (ABS(Z(K)) .LE. 1.0E0) GO TO 110
|
||
|
S = 1.0E0/ABS(Z(K))
|
||
|
CALL SSCAL(N,S,Z,1)
|
||
|
110 CONTINUE
|
||
|
L = IPVT(K)
|
||
|
T = Z(L)
|
||
|
Z(L) = Z(K)
|
||
|
Z(K) = T
|
||
|
120 CONTINUE
|
||
|
S = 1.0E0/SASUM(N,Z,1)
|
||
|
CALL SSCAL(N,S,Z,1)
|
||
|
C
|
||
|
YNORM = 1.0E0
|
||
|
C
|
||
|
C SOLVE L*V = Y
|
||
|
C
|
||
|
DO 140 K = 1, N
|
||
|
L = IPVT(K)
|
||
|
T = Z(L)
|
||
|
Z(L) = Z(K)
|
||
|
Z(K) = T
|
||
|
NL = MIN(ML,N-K)
|
||
|
IF (K .LT. N) CALL SAXPY(NL,T,ABE(K+NL,ML1-NL),-LDB,Z(K+1),1)
|
||
|
IF (ABS(Z(K)) .LE. 1.0E0) GO TO 130
|
||
|
S = 1.0E0/ABS(Z(K))
|
||
|
CALL SSCAL(N,S,Z,1)
|
||
|
YNORM = S*YNORM
|
||
|
130 CONTINUE
|
||
|
140 CONTINUE
|
||
|
S = 1.0E0/SASUM(N,Z,1)
|
||
|
CALL SSCAL(N,S,Z,1)
|
||
|
YNORM = S*YNORM
|
||
|
C
|
||
|
C SOLVE U*Z = V
|
||
|
C
|
||
|
DO 160 KB = 1, N
|
||
|
K = N + 1 - KB
|
||
|
IF (ABS(Z(K)) .LE. ABS(ABE(K,ML1))) GO TO 150
|
||
|
S = ABS(ABE(K,ML1))/ABS(Z(K))
|
||
|
CALL SSCAL(N,S,Z,1)
|
||
|
YNORM = S*YNORM
|
||
|
150 CONTINUE
|
||
|
IF (ABE(K,ML1) .NE. 0.0E0) Z(K) = Z(K)/ABE(K,ML1)
|
||
|
IF (ABE(K,ML1) .EQ. 0.0E0) Z(K) = 1.0E0
|
||
|
LM = MIN(K,M) - 1
|
||
|
LZ = K - LM
|
||
|
T = -Z(K)
|
||
|
CALL SAXPY(LM,T,ABE(K-1,ML+2),-LDB,Z(LZ),1)
|
||
|
160 CONTINUE
|
||
|
C MAKE ZNORM = 1.0E0
|
||
|
S = 1.0E0/SASUM(N,Z,1)
|
||
|
CALL SSCAL(N,S,Z,1)
|
||
|
YNORM = S*YNORM
|
||
|
C
|
||
|
IF (ANORM .NE. 0.0E0) RCOND = YNORM/ANORM
|
||
|
IF (ANORM .EQ. 0.0E0) RCOND = 0.0E0
|
||
|
RETURN
|
||
|
END
|